- UNSW
- ...
- UNESCO Centre for Membrane Science and Technology
- Our research
- Food & agriculture
- Optimising low-pressure membrane pre-treatment for desalination
- Home
- About us
-
Our research
- Membrane material development
-
Water treatment
- Study of floc strength and stability during direct filtration of surface water
- Mass and heat transfer in submerged vacuum membrane distillation and crystallization
- Development of novel membrane integrity tests for virus sized particles
- Reuse of old reverse osmosis membranes used in desalination plants | UNESCO Centre for Membrane Science and Technology - UNSW Sydney
- Optimisation of hybrid coagulation/submerged membrane bioreactor treatment of wastewaters | UNESCO Centre for Membrane Science and Technology - UNSW Sydney
- Developing national validation guidelines for MBRs in water recycling
- Assisted forward osmosis for energy savings in RO desalination
- Characterising nanostructure functionality of conventional and advanced polymeric membranes using electrical impedance spectroscopy
- Optimising low-pressure membrane pre-treatment for desalination | UNESCO Centre for Membrane Science and Technology - UNSW Sydney
-
Process design & modelling
- Computational fluid dynamics modelling of Membrane Bioreactors
- Resilience modelling of advanced water treatment plants
- Mechanical reliability of microporous membranes in water recycling applications
- Optimisation of Membrane Distillation Processes
- Feedback Destabilizing Control of Electro-osmotic Flow
- Greenhouse gas technology
- Bio-separations
-
Food & agriculture
- Membrane facilitated subsurface drip irrigation
- Milk ultrafiltration
- Protein recovery from potato processing water using ultrafiltration membrane
- Phosphorus recovery from wastewater
- Sequential chemical and enzymatic cleaning of ultrafiltration membranes in dairy applications
- Application of membrane separation process in concentration and separation of polyphenol compounds for evaluation of their health benefits
- Optimising low-pressure membrane pre-treatment for desalination
-
Archived research projects
- Composite biocatalytic nanoflower
- Superhydrophobic Membranes for Membrane Distillation Applications
- Polymers for Isoporous and Functional Membranes
- Separation performance of dip-coated microporous hollow fibre polymer inclusion membranes (PIM)
- Improvement in Fouling Release Properties of Ultrafiltation PVDF Membranes
- Thin Film Nano-composite Membrane Fabrication for Carbon Dioxide Capture from Flue Gas
- MOF based highly efficient gas separation membrane
- Biocatalytic membrane reactors for greenhouse gas capture
- Evaluation of CO2 Capture with High Performance Hollow Fiber Membranes from Flue Gas: A Pilot Scale Study
- Improved Carbon Dioxide Separation Performance with Additives of PEO/PDMS Copolymer in PPO Membranes
- Our facilities
- Our services
- Contact us
- Home
- About us
-
Our research
Water treatment
- Study of floc strength and stability during direct filtration of surface water
- Mass and heat transfer in submerged vacuum membrane distillation and crystallization
- Development of novel membrane integrity tests for virus sized particles
- Reuse of old reverse osmosis membranes used in desalination plants | UNESCO Centre for Membrane Science and Technology - UNSW Sydney
- Optimisation of hybrid coagulation/submerged membrane bioreactor treatment of wastewaters | UNESCO Centre for Membrane Science and Technology - UNSW Sydney
- Developing national validation guidelines for MBRs in water recycling
- Assisted forward osmosis for energy savings in RO desalination
- Characterising nanostructure functionality of conventional and advanced polymeric membranes using electrical impedance spectroscopy
- Optimising low-pressure membrane pre-treatment for desalination | UNESCO Centre for Membrane Science and Technology - UNSW Sydney
Process design & modelling
- Computational fluid dynamics modelling of Membrane Bioreactors
- Resilience modelling of advanced water treatment plants
- Mechanical reliability of microporous membranes in water recycling applications
- Optimisation of Membrane Distillation Processes
- Feedback Destabilizing Control of Electro-osmotic Flow
Food & agriculture
- Membrane facilitated subsurface drip irrigation
- Milk ultrafiltration
- Protein recovery from potato processing water using ultrafiltration membrane
- Phosphorus recovery from wastewater
- Sequential chemical and enzymatic cleaning of ultrafiltration membranes in dairy applications
- Application of membrane separation process in concentration and separation of polyphenol compounds for evaluation of their health benefits
- Optimising low-pressure membrane pre-treatment for desalination
Archived research projects
- Composite biocatalytic nanoflower
- Superhydrophobic Membranes for Membrane Distillation Applications
- Polymers for Isoporous and Functional Membranes
- Separation performance of dip-coated microporous hollow fibre polymer inclusion membranes (PIM)
- Improvement in Fouling Release Properties of Ultrafiltation PVDF Membranes
- Thin Film Nano-composite Membrane Fabrication for Carbon Dioxide Capture from Flue Gas
- MOF based highly efficient gas separation membrane
- Biocatalytic membrane reactors for greenhouse gas capture
- Evaluation of CO2 Capture with High Performance Hollow Fiber Membranes from Flue Gas: A Pilot Scale Study
- Improved Carbon Dioxide Separation Performance with Additives of PEO/PDMS Copolymer in PPO Membranes
- Our facilities
- Our services
- Contact us

Australian Broiler abattoirs user on average 21.8L per bird, with over 44ML used daily industry wide. With plants often located in area with limited water supply and with the cost of water and water treatment increasing an opportunity exists for water treatment to be employed within the plant to reduce costs.
This project aims to asses the performance of ceramic membrane and to analyse water quality for water source from various unit operations within an abattoir. A pilot plant will be tria...
Australian Broiler abattoirs user on average 21.8L per bird, with over 44ML used daily industry wide. With plants often located in area with limited water supply and with the cost of water and water treatment increasing an opportunity exists for water treatment to be employed within the plant to reduce costs.
This project aims to asses the performance of ceramic membrane and to analyse water quality for water source from various unit operations within an abattoir. A pilot plant will be trialled at a NSW abattoir and the data generated will be used to quantify the economic, environmental and social impacts of implementing this technologyMoreover, the impact of the presence of algae in seawater on pre-treatment membranes will also be investigated. Not only the algae itself is expected to significantly affect the performance of the low-pressure membranes, but physical and chemical stresses on algae could also be responsible for the release of organic compounds with high fouling potential. In addition, some of those released extra-polymeric substances are expected to permeate through the pre-treatment and have a significant impact on the RO system. It is therefore crucial to understand and characterise the link between algae, physical and chemical stress and performance of the dual membrane systems used for desalination.
- Research team
- Collaborators
Greg Leslie
Julian Cox
David Grant (PhD student)
Tony Pavic (Birling Avian Laboratories)