- UNSW
- ...
- Our schools
- Mathematics & Statistics
- Engage with us
- Seminars
- 2018
- Toeplitz Operators on a Hilbert Space of Entire Functions
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
- Undergraduate
- Honours year
- Postgraduate coursework
-
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
-
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Student societies
- Student noticeboard
- Casual tutors
- Engage with us
- News & events
- Contact
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Engage with us
- News & events
- Contact
Abstract:
Toeplitz operators generalise matrices which are constant on diagonals. There is a well-developed theory of these operators, particularly when acting on the Hardy space H2(T)H2(T) which might be thought of as consisting of functions on the unit circle, or else analytic functions on the unit disk. These operators acting on H2(T)H2(T) have an interesting connection with the theory of Fourier series, which motivated their study. A less well-known space is the Segal-Bargmann space which was motivated by work in Quantum Mechanics. This Hilbert space consists of analytic functions on CnCn that do not grow too rapidly.
"We investigate Toeplitz and Hankel operators acting on the Segal-Bargmann space, and determine necessary and sufficient conditions for these operators to be compact. The sub-algebra of L∞(Cn)L∞(Cn) consisting of `bounded continuous eventually slowly varying' functions can be used to determine which Toeplitz operators are Fredholm. These functions establish an index theorem for their corresponding Toeplitz operators. This theorem is analogous to the index theorem for Toeplitz operators acting on the Hardy space H2(T)H2(T), which characterises index in terms of winding number.