- UNSW
- ...
- Our schools
- Mathematics & Statistics
- Engage with us
- Seminars
- 2018
- The stochastic Gray Scott system
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
- Undergraduate
- Honours year
- Postgraduate coursework
-
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
-
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Student societies
- Student noticeboard
- Casual tutors
- Engage with us
- News & events
- Contact
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Engage with us
- News & events
- Contact
Abstract:
There are many situations where one imposes certain conditions on a function and its Fourier transform and then wants to optimize a certain quantity. I will describe how these types of Fourier optimization problems can arise in the context of the explicit formula, which relates the primes to the zeros of the Riemann zeta-function. These ideas lead to the strongest known estimates in the classical problem of bounding the maximum gap between consecutive primes assuming the Riemann hypothesis. Our answer depends on the size of the constant in the Brun-Titchmarsh inequality. Using the explicit formula in the other direction, we can also use Fourier optimization to prove the strongest known conditional estimates for the number of zeta zeros in an interval on the critical line. This is based on joint works with E. Carneiro, V. Chandee, and K. Soundararajan.
Reaction-diffusion systems constitute prevalent macroscopic models for microscopic phenomena. However, as their derivation relies on fundamental balance laws and Fick's law of diffusion, significant aspects of microscopic dynamics such as fluctuations of molecules are disregarded. An appropriate mathematical approach to establish more realistic models is the incorporation of stochastic processes. In our work, we added a stochastic term, i.e., a time-homogenous spatially Wiener process, and investigated the existence and uniqueness of a solution. Besides, we performed some numerical experiments. Here, we used splitting methods for the nonlinear and linear terms.
In the talk, first, the problem in the deterministic context is introduced. Then we introduce the time-homogeneous spatially Wiener process. Then the main result is presented, and the steps of the proof are outlined. Then, finally, we will show the numerical scheme and some simulations.