- Home
- About us
- Study with us
- Our research
-
Student life & resources
-
Undergraduate program plans pre 2024
- Bachelor of Engineering (Materials Science & Engineering) (Honours)
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Master of Biomedical Engineering
- Bachelor of Engineering (Materials Science) (Honours)/Commerce
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Engineering Science
-
Undergraduate program plans 2024 onwards
- Bachelor of Engineering (Materials Science & Engineering) (Honours) New Program 2024 Onwards
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Master of Biomedical Engineering New Program 2024 Onwards
- Bachelor of Engineering (Materials Science) (Honours)/Commerce New Program 2024 Onwards
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Engineering Science New Program 2024 Onwards
- Postgraduate program plan
- Course outlines
- Important information for all coursework students
- Work integrated learning
- Careers and industries
- Student societies
- Exchange programs
- Life on Campus
-
Undergraduate program plans pre 2024
- Engage with us
- News and events
- Home
- About us
- Study with us
- Our research
-
Student life & resources
Undergraduate program plans pre 2024
- Bachelor of Engineering (Materials Science & Engineering) (Honours)
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Master of Biomedical Engineering
- Bachelor of Engineering (Materials Science) (Honours)/Commerce
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Engineering Science
Undergraduate program plans 2024 onwards
- Bachelor of Engineering (Materials Science & Engineering) (Honours) New Program 2024 Onwards
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Master of Biomedical Engineering New Program 2024 Onwards
- Bachelor of Engineering (Materials Science) (Honours)/Commerce New Program 2024 Onwards
- Bachelor of Engineering (Materials Science & Engineering) (Honours)/Engineering Science New Program 2024 Onwards
- Engage with us
- News and events

The equilibrium spacing will occur when the bond energy (Fn) is a minimum. This is when the net forces between the two atoms is zero: Fn=Fa+Fr=0.
Where:
Fa = attractive force.
Fr = repulsive force.
The force between atoms, F, is given as:

where U = bond energy and r = atomic separation.

Bond stiffness, S, is given by:

where U = bond energy and r = atomic separation.
When the stretching is small, S is constant and therefore the bond is linear-elastic. This means that as the interatomic distance increases, the force required increases linearly.

The shape of these curves changes for different bond types and materials. A number of material properties are influenced by this curve shape. The F vs. r curve for a flexible material will be shallower than one for a stiff material, at ro.