0.9 m wave and open channel flume

Personalise
The Water Research Laboratory’s 0.9 m wave flume measures approximately 36 m in length, 0.9 m in width, and 1.6 m in depth. The flume walls are primarily constructed of brick, with a large glass panelled section where models are constructed, allowing visual observations to be made throughout testing. The permanent floor of the flume is constructed of concrete, although site specific two-dimensional bathymetric profiles can be reproduced in the flume using an adjustable elevated timber floor system.

The Water Research Laboratory’s 0.9 m wave flume measures approximately 36 m in length, 0.9 m in width, and 1.6 m in depth. The flume walls are primarily constructed of brick, with a large glass panelled section where models are constructed, allowing visual observations to be made throughout testing. The permanent floor of the flume is constructed of concrete, although site specific two-dimensional bathymetric profiles can be reproduced in the flume using an adjustable elevated timber floor system.

The flume is equipped with a HR Wallingford electro-mechanical wave generator (paddle-type). The system can generate both monochromatic and irregular wave spectrums, as well as producing user defined pre-recorded wave sequences. Control signals for the wave paddle are produced and controlled using the HR Merlin software.

A range of data can be collected during experiments in the flume, including wave statistics, wave runup, overtopping rates and depths, forces, and pressures. All electronic sensor units are typically logged using the HR DAQ or custom produced software packages within the National Instruments platform. Wave height and water level measurements are made using capacitance wave probes, which are available in a range of lengths from 200 mm to 1500 mm.

Overtopping analysis is typically measured by volumetric collection, or with the use of capacitance wave probes and/or ultrasonic sensors to record timeseries data for overtopping rates. Force measurements are collected using high-accuracy load cell units, available in a range of capacities. Pressures are measured using pressure transducer units, available in a range of capacities up to 125 kPa.