This project is to upgrade our in-house designed single frequency GPS receiver, called Kea, to be capable of use with multiple frequencies, antennas and systems. It will allow us to fly a far more sophisticated instrument on upcoming satellite missions. GNSS receivers help provide services to a variety of users using signals transmitted by constellations of satellites in space. Defence, maritime, building, mining, logistics and agriculture industries, plus personal consumers of mobile navigation services all rely on the data made possible by this technology. By upgrading Kea from a single frequency GPS receiver to a multi-frequency, multi-system receiver will greatly improve the accuracy of the positioning information it provides.

By listening to more systems, we can use the receiver for new applications, such as Global Navigation Satellite System [GNSS] reflectometry. This satellite remote sensing technique uses GNSS signals reflected from the Earth’s surface to estimate environmental conditions over the sea and land. It’s used to monitor wind direction and speed over the ocean and the height of waves, which helps maritime planning. It’s also used for flood management and other passive radar and remote sensing appli...

School
Civil and Environmental Engineering