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1. Introduction

Housing markets have two distinct features: evenysk is unique and houses are sold
infrequently. This is problematic for the constrantof house price indexes because the
usual matched-model method, where the prices oflgaoe tracked over time, breaks
down. Hedonic regression methods and repeat sa#sods deal with these problems.
The uniqueness of properties is mainly due to lonatWithin a single neighborhood,
the value of two properties with similar structucas differ significantly, depending on
the exact locality.

Repeat sales indexes fully control for locatiorceithey track the prices of the
‘same’ properties over time (in a regression framy)yv The problem with repeat sales
methods is threefold. First, because they onlymathed pairs of houses during the
sample period, these methods throw away informaiiosingle sales and are therefore
inefficient. Second, standard repeat sales methodsot adjust for quality changes of
the individual houses. Third, these methods capmmtide information on the shadow
prices of the various property characteristics g do not allow the estimation of, for
example, price indexes of the land the structusea. Given the problems with repeat
sales methods, we focus on hedonic indexes.

Traditional hedonic price indexes also have a nunabalisadvantages. First,
data on housing characteristics must be avail&#eond, location is typically included
in hedonic models at some aggregate level, sughosicode areas, rather than at the
individual property level, potentially leading toc¢ation bias’. Third, land is usually not
included as an independent variable, again potBngaving rise to bias and making it
impossible to estimate price indexes for land. @atal data, i.e. information on the
exact location in terms of geographic coordinateshsas longitude and latitude, can
help attenuate the latter disadvantages. Our aito show how this can be done and
how hedonic house price indexes can be constracteardingly.

A general problem with the estimation of hedonicdels for housing is omitted
variables bias. Not properly accounting for locatman be a major cause of bias and
often leads to spatial autocorrelation of the eteoms. As mentioned above, the easiest
way to deal with the problem is to include dummyiafales for postcode areas. Another
straightforward approach, which has also been &ptjy investigated empirically, is to
include explanatory variables for all kinds of aities. While being of interest since it



provides information on the effect of those amesitbn the prices or price changes of
properties, this approach is very data intensingdrtantly, both methods cannot fully
adjust for location, and so some omitted variablies and spatial autocorrelation will
most likely remain.

In recent years, more sophisticated methods hame et forward to handle the
problem of spatial autocorrelation. Spatial errardels attempt to explicitly model the
spatial autocorrelation while spatial lag modeldude the value of neighbor properties
in the model. Both methods can be used in a tinmenay hedonic framework, where
the model is estimated on pooled data for the wkalteple period and price indexes are
computed from the time dummy coefficients (Dorsegle 2010; Hill et al., 2009). It is
also possible to apply these methods in a hedamatation framework (Rambaldi and
Rao, 2011; 2013). Another method uses a spatiodeshfilter which eliminates spatial
autocorrelation in order to estimate an index fameelling with specific characteristics
(Pace et al., 1998; Tu et al., 2004; Sun et ab520

A disadvantage of the above parametric methodsaisa spatial weight matrix
has to be specified a priori but that its precitsacsure is unknown. Nonparametric or
semi-parametric methods are more suitable to atdourspatial dependence. Semi-
parametric methods have become increasingly paptla effect of variables relating
to location, for example, can be estimated nonpatacally in ‘characteristics space’
whereas the effect of variables relating to thecstre of the property can be estimated
parametrically, as in traditional hedonic models.

In this paper, we assume that location affectsptiee of land but not the price
of structures. That is, we postulate that landgricary across space whereas the price
of structures is ‘fixed’. We deal with this type gpatial nonstationarity using a semi-
parametric approach known as Mixed GeographicalgigMed Regression (MGWR)
in which the land prices are estimated by Geograblyi Weighted Regression (GWR),
a nonparametric method proposed by Brunsdon €t886) and Fotheringham et al.
(1998a). An additional advantage is that we willdide to plot a detailed map of land
prices.

Apart from the fact that it deals with spatial n@at®narity in a straightforward
way, GWR enables us to model the local form of ea@lation. Moreover, it allows
land prices to vary not only across space but atsoss time by estimating the model

for each period separately. The latter is a prasggufor the construction of hedonic



imputation price indexes. In conclusion, GWR isther flexible method, which can be
seen as a generalization of traditional hedonithous.

We are specifically targeting statistical agen@agaged in the compilation of
house price indexes. This has several consequehtesgencies should have access to
geocoded data, but this is hardly a problem thegs.drhe methods applied should be
relatively easy to explain. Most importantly, theécp indexes should be non-revisable.
This means that the use of the time dummy methderevpreviously published index
numbers change when the sample period is extemdbdeaw data is added, is ruled out.
This strengthens the case for constructing hedamatation indexes.

Furthermore, our paper tries to fill a gap in teeentHandbook on Residential
Property Price IndicegEurostat et al., 2013) in which the use of getiapdata in the
estimation of hedonic house price models is noy wesll covered: The Handbook uses
data for detached dwellings sold in the Dutch oftyA” from the first quarter of 2005
to the second quarter of 2008 to illustrate theousr methods. We exploit sales data for
the city of “A” also but extend the data set inetiidimensions. We have data from the
first quarter of 1998 to the second quarter of 23@Bour data set covers a period of
more than 10 years. Note though that we will useuahrather than quarterly data in
our empirical work. The range of structural chagastics is much broader than that in
the Handbook. Finally, we include types of hougséeiothan detached dwellings.

The paper proceeds as follows. Section 2 outlinesesbasic ideas. Our hedonic
model is linear, with non-transformed property pras the dependent variable and size
of land and size of structures as explanatory g A normalized version, with price
per square meter of living space as the dependeiathble, is discussed as well. We also
address the inclusion of additional characteristicslescribe the quality of structures,
including age of the structure to adjust for de@tsan. Section 3 describes how we
treat location. As mentioned before, location igitzdized into the price of land, and we
would expect land prices to differ at the propéetyel. The GWR and MGWR models
and the way in which they are estimated are expthin detail. Section 4 shows how
we calculate hedonic imputation indexes. Sectignesents empirical evidence for the
Dutch city of “A”. Section 6 discusses the resulidgntifies potential improvements and

concludes.

! For an excellent introduction, see Hill (2013).



2. A simplification of the ‘builder’'s model’

2.1 Some basic ideas

Our starting point is the ‘builder's model’ propdsey Diewert, de Haan and Hendriks
(2011) (2015). It is assumed that the value ofa@pertyi in periodt, p', can be split
into the valuev, of the land the structure sits on and the valyef the structure:

pit = VitL +Vits : (1)

The value of land for propertyis equal to the plot size in square metejs, times the
price of land per square meter,, and the value of the structure equals the siz@ef
structure in square meters of living spazg, times the price of structures per square
meter, B .7 After adding an error term; with zero mean, model (1) becomes

pl=a'z + Bz, +u. )
The (shadow) prices of both land and structure@)rare the same for all properties,
irrespective of their location. In section 3 wearethis assumption and allow for spatial
variation of, in particular, the price of land. Ttoelilder's model’ takes depreciation of
the structures into account, a topic we addresgation 2.2.

Equation (2) can be estimated on data of a sai@plef properties sold in period
t. This approach, however, suffers from at leastdlproblems. First, the model has no
intercept term, which hampers the interpretatiorRbfand the use of standard tests in
Ordinary Least Squares (OLS) regression. Secohmjhadegree of collinearity between
land size and structure size can be expected,atarthand 8' will be estimated with
low precision. Finally, heteroskedasticity is Iikeb occur since the absolute value of
the errors tends to grow with increasing properiggs.

Our next step is to divide the left hand side agttrhand side of equation (2)

by structure sizezg , giving

t*

p=a't+ B +¢g, 3)
where p = p'/ z, is the normalized property price, i.e. the valfighe property per
square meter of living spacg, =z, / z, denotes the ratio of plot size and structure

2 We follow Diewert, de Haan and Hendriks (2015) wised living space (usable floor space) in square
meters as a measure of size of the structuresrnalige measures are also possible, for instanee th
volume of the structure in cubic meters.



size, ands; =u'/zg. This resolves the first two problems as the mourl has an
intercept term and a single explanatory variable.

However, the normalization is unlikely to resolfe issue of unstable parameter
estimates. Dividing byz, is a means of adjusting for heteroskedasticityrwife error
variance in (2) is proportional to the square alicure size; estimating equation (3) by
OLS is equivalent to estimating (2) by Weighted dte8quares (WLS) using weights
equal tol/(z)?. This kind of error variance seems quite extreang, so this weighting
system may not be helpful to reduce the heterosiieitst problem. Also, the ratios'
(and the normalized valugs ) will exhibit relatively little dispersion.

Some statistical agencies measure and publish eBangnormalized property
prices, often the price per square meter of strastin order to adjust for compositional
change of the properties sold. We do not recomnti@iscapproach because it is changes
in unadjusted property prices and price changed pexple will be interested in. Yet,
given that (3) is a straightforward regression nhodeluding an intercept term, we
favor specification (3) over (2).

2.2 Adding structures characteristics

A potential weakness of hedonic modeling for hogssomitted variables, leading to
biased (OLS) parameter estimates and predictedgri@mitted variables in the models
(2) and (3) can relate to land or structures. Gaditaictors relating to land are addressed
in section 3. Here we describe our approach taidich additional characteristics for
structures. There are two issues: depreciationrandvation of the structures has not
been taken into account so far, and the use ofasizbe only measure of quality of the
structures seems too simplistic.

Following Diewert, de Haan and Hendriks (2015),imigally assume a straight-
line depreciation model. The adjusted value of ghracture isg' (1-9'a’)z,, where
0" is the depreciation rate arad is age of the structure. Information on renovatian
the level of individual dwellings is unavailable #at - 5'a; measures the effect nét
depreciation, i.e. the combined effect of ‘truepdeciation and renovation. Written in
linear form, the adjusted structures valugBig,, — 5'd'a’ z . Adding the second term
to the right-hand side of equation (2) yields

p=a'z +p'zs - f''azs +U;. (4)



We do not know the exact age of the structureswaitdo know the building
period in decades, from which we can calculate @pprate age in decades. Thus, age
in our data set is a categorical variable. Thedegreciation rate is of course categorical
as well® Using multiplicative dummy variableB;, that take on the value 1 if in period
t propertyi belongs to age categoay(a=1,...,A) and the value O otherwise, and after
reparameterizing such th#& z, is no longer a separate term, model (4) is eqeintab

=a'z +Za ly D.Z; +ui. To be able to use standard estimation techniques,
modify this model as follows:

CY ZL *-:E:}}[)uizs +'U (5)

a=l

No restrictions are placed on the parameférsand the new functional form is
neither continuous nor smooth. This is somewhablproatic from a theoretical point
of view, because it is at odds with the initialagght-line depreciation model. On the
other hand, our approach introduces some flexybifige of the structures is not only
important for modeling depreciation, it can alsoseen as an attribute of the dwelling
itself in that houses built in a particular decagle more in demand than other houses,
perhaps for their architectural style or for otheasons.

Diewert, de Haan and Hendriks (2015) also show twincorporate the number
of rooms. The new value of the structures becofigs—J'a )(1+ /' z,) z , where 4/
is the parameter for the number of rooms* The linear form for this expression is
B'zs + B U'z,z - B da’zg - B0 'a iz . Using dummieD; for the number of
rooms with the value 1 if in periddthe property belongs to categaryr =1,...,R) and
the value 0 otherwise, and reparameterizing agiagnextension of (5) becomes

R A R
=a'z + ZyaD.azs +> ADrze +>. > 1, DiD; zs +U! . (6)
r=1

a=lr=1
Next, in order to save degrees of freedom, we igrioe ‘second-order’ effects

due to the interaction terni3; D;

Ir ?

yielding

% Diewert, de Haan and Hendriks (2015) treated apprate age as a continuous variable, despite tte fa
that it is in fact categorical. They found that #s&timated net depreciation rate was quite volatilich
was not consistent with their a priori expectatidra stable depreciation rate, and subsequeniiypatsd
models where the depreciation rate was kept constaer time. However, we are not interested in the
depreciation rate itself and accept any volatility.

“ Note that Diewert, de Haan and Hendriks (2015)nditlallow the parameter to change over time.



a Z|L Z a |aZ|S +ijtr Dltr ZitS +uit =a'tzitL +|:Z aia Z/P |r:|Z|S +U (7)
r=1

The second expression shows that the price oftates; i.e. the price per square meter
of living space, equalg, + A for properties in age class(a=1,...,A) and category

(r =1,...,,R) for number of rooms. A high degree of multicolbmigy can occur among
the various structures components, but we do notywabout this because we are only
interested in the combined effect. Multicollinegrtetween these components and plot
size might still be a problem though. Dividing fiivst expression in (7) by, gives

A-1 R-1
p =6 +a'r'+> YD, +> AD; +¢'. (8)
a=1 r=1

We included an intercept ter#f and excluded dummy variables for age clasand
categoryR for the number of rooms to identify the model.

Model (8) is a straightforward estimating equationthe overall property price
per square meter of living space. Additional categb variables for structures can be
included in a similar way as was done for the nundfeooms. As a matter of fact, in

our empirical work we will use type of house insted the number of rooms.

3. Land and spatial nonstationarity

3.1 Location and the price of land

Location is the most important omitted variabléhe hedonic models presented so far.
In many empirical studies, location is treated aseparate characteristic’ by including
additive locational dummy variables in models tog dverall property price. This is not
the solution we prefer. Location is definitely dafized into property prices. However,
the price of structures is most likely to be appmately constant across space, at least
within relatively small regions or cities. It isglprice of the land the structure is built on
that can vary significantly across different looas, even within a single neighborhood.
The question then arises as to how this spatigtan, or spatial nonstationarity as it is
sometimes referred to, in the price of land shda@anodeled.

We could make the simplifying assumption that thiegoof land varies across
postcode areas but is the same within each postredk (k =1,...,K) and denoted by



a, . Usingmultiplicativepostcode dummy variable3, , which take on the value of 1 if
propertyi belongs tdk and the value 0 otherwise, an improved versiomaodel (7) for

the unadjusted property price is

zak +z;¢D.azs +3ADLZ, ), ©)
r=1

and an improved version of model (8) for the noimeal property price is

R-1
p =6 +zak(K)D|krl +zya +z/‘tr D, +& . (10)
r=1

a=1
The assumption of equal land prices within postca&as could be too crude,
depending of course on the level of detail of tbetpode system. Generalized versions
of the models (9) and (10) are found by assumiag ttie price of land can in principle
differ at the individual property level, i.e. attmicro location. We denote the property-

specific land price by, yielding

R
=ajz + ZVaD.azs +D AD;zs +y (11)
a=1 r=1
and
) A1 R
pr =6 +air' +) yiD, + > AD; +&. (12)
a=1 r=1

Models (11) and (12) obviously cannot be estimdtgdtandard regression techniques.
In section 3.2 we will discuss a semi-parametrigrapch that does allow us to estimate
these models. Because the method utilizes dataeoprices of neighboring properties

(in addition to the price of propertyitself) to estimater; , it is not necessarily true that

the use of models (11) or (12) will lead to aggtegaice indexes that are very different
from those obtained by using models (9) or (10).

3.2 Accounting for spatial variation of land prices

One method that deals with spatial nonstationaritproperty prices is the expansion
method (Casetti, 1972; Jones and Casetti, 1992 .pfbperty price, or in our case the
price of land, can be seen as an unknown functigdheoproperty’s location in terms of
latitude x, and longitudey, or a similar geographic coordinate system. Thiscfion

can be approximated using a Taylor-series exparafi@ome order; typically, second-



order approximations are applied. The expansiorhotetnakes use of geospatial data
but is basically parametric as it calibrates a peesied parametric model for the trend
of land prices across space (Fotheringham et2984).

The method we will apply, referred to @&eographically Weighted Regression
(GWR), deals with spatial nonstationarity in ayrabnparametric fashion (Brunsdon et
al., 1996; Fotheringham et al., 19984kt us remove the structural characteristics from
model (11) for a moment and thus consider landh@®hly independent variable. Using
a, =a(x,y,), the model becomes

p=a(x,y)z, +u;. (13)
Note that we have dropped the supersdript convenience, but it should be clear that
we estimate all models for each time period sepbraiote also that the prices of land
can be estimated for all points in space, notfusthe sample observations, enabling us
to depict a surface of land prices for the entivelg area.

Model (13) can be estimated using a moving kernetaw approach, which is
essentially a form of WLS regression. In order btatn an estimate for the price of land
a(x.,y;) for propertyi, a weighted regression is run where each relabseéroation|
(i.e., each neighboring property) is given a weight(i # j) . The weightw; should be
a monotonic decreasing function of distamgcebetween(x;,y, )and(x;,y;). There is
a range of possible functional forms. In this paperhave chosen the frequently-used
bi-square functiorgiven by:

0 otherwi:

" :{(1—dif/h2)2 fg<n (14)

whereh denotes the bandwidth defining the rate of deerémaserms of distance. The
choice of bandwidth involves a trade-off betweesstand variance. A larger bandwidth
generates an estimate with larger bias but smadleance whereas a smaller bandwidth
produces an estimate with smaller bias but largeiaxce. This bias-variance trade-off
motived us to choose the bandwidth by minimizingdtoss-validation(CV) statistic

Cv = i[Yi - 9¢i (h)]2 J (15)

® For a comparison of geographically weighted resjcesand the spatial expansion method, see Bitter e
al. (2007).



where y.. (h)is the fitted value ofy, with the observations for pointomitted from the
calibration process.

The nonparametric GWR approach to dealing withigpabnstationarity of the
price of land has to be adjusted for the fact thatels (11) and (12) include structural
characteristics with spatially fixed parametersisTlirads to a specific instance of the
semi-parametric Mixed GWR (MGWR) approach discudsgdrunsdon et al. (1999)
in which some parameters are spatially fixed ardrémaining parameters are allowed
to vary across space. To describe the estimatiotepure, it is useful to change over to
matrix notation. Denoting the number of observatibgn, model (11) can be written in
matrix form as

P=2Z Oae+Zp+u (16)

wherea = (a(x, Y,),a(X,,Y,),...a(X,,y,))" is a vector of land prices to be estimated,
O is an operator that multiplies each element& dfy the corresponding element 6f ,
and Z g is the matrix of structural characteristics in@ddn model (11), given by

Dllzls DlZZ:lS e D1 j Zg

_ DZIZZS D22 Zys - Dz i Zg
s : : . : '

Dnlan DrQ Zys DannS

andp =(8,,5,,....3,)" is the vector of parameters relatingZq.

We follow Fotheringham et al. (2002), who proposadestimation method that
is less computationally intensive than the methescdbed by Brunsdon et al. (1999).
To economize on notation, we write the GWR hat mats

2, [ZIW (% WZ, 2 W (% ¥)
T N
s=| 2 [ZIW (%, yz)éL] ZW (% %) |

2 [ZIW (% WZ ] ZW (% )|

where W(x;, y;) =diagw, (X, V,), W, (X, ¥:),....W, (X, ¥;)]. The calibration of the model
consists of four steps:

® We will broadly describe the actual estimationged@ure and present the estimators for the paraspeter
but we do not provide the exact MGWR algorithm. Betails, see Fotheringham et al. (2002), Mei et al
(2006) and Geniaux and Napoléone (2008).

10



(1) regressing each column dfy againstZ, using the GWR calibration method and
computing the residual® = (1 -S)Z;

(2) regressing the dependent variaBlagainstZ, using the GWR approach and then
computing the residualR = (I —-S)P;

(3) regressing the residudis against the residual3 using OLS in order to obtain the
estimates$ =(Q"Q) Q'R ;

(4) subtractingZ Sﬁ from P and regressing this part agaiZst using GWR to obtain
estimatesd(x,,y,) = [ZTW(x,¥)Z | " ZIW(x,y (P~ Z ).

The predicted values for the property prices caaxpgessed as

P=S(P-ZB)+Zp=LP, (17)

with L =S+(1 -9)Z[ZL(1 -9 (1 -9Z| " 211 -9 (1 -9).
The parameter estimates and the predicted propadgs depend on the choice
of weights, hence on the choice of bandwildtThe optimal value foh is determined

by minimizing the CV score, as mentioned above.

4. Hedonic imputation price indexes

This section addresses the issue of estimatingtguaaljusted property price indexeés.
Suppose that sample data is available for pericd8,...,T , where 0 is the base period
(the starting period of the time series we wartdnstruct), and suppose model (11) has
been estimated separately for each period. Thegbeeldoroperty prices, obtained using
MGWR, are given byp! =a'z, +[6' +z:;7;Di; +Z:lfl‘r D, ]z . For short, we write
the predicted price of structureé‘,+22:l y.D: +Zilj‘r D!, as3' and the predicted
overall property price ag; =a'z, +B'z; (t=0,....T).

We denote the sample of properties sold in the pased byS°. The hedonic
imputation Laspeyres property price index goingrfroeriod O to periotlis defined by

> A
F)L(thspeyres= lDSz [30 ’ (18)

i0s?

" In this paper we only discussles-basegroperty price indexes. For an explanation of themnce
between sales-based and stock-based indexes, et et al. (2013).
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Equation (18) may need some explanation. All qai@stare set equal to 1 because each
property is unique. Because the index is basedsngte sample, it will not be affected
by compositional change. Most, if not all, of thegerties traded in period 0 are not re-
sold in period, and the ‘missing prices’ therefore need to beitag by p'® . We have
also replaced the observable base period prpfesy predicted pricesp’, a method
known asdouble imputatiofd

The p'© are estimated peridctonstant-quality property prices, i.e. estimates o
the prices that would prevail in periddor properties sold in period O if the properties’
price-determining characteristics were equal ta¢haf the base period, which serves to
adjust for quality changes of the individual prdjge. These constant-quality prices are
estimated byp!® =420 +[6" +> " PAD2 + > A D?1z% . For brevity, we usg8'®
for the estimated constant-quality price of stroesyé" +Z:;11;7;Di‘; +Zi—1l 1DC .

Substitution of p° =@°z° + 3°Z% and pi@ =420 + B2 into (18) yields

JlaR+BO%)  Yazw YOz
PL(gspe I’ES: iDSO A ~ = éE iDSO ~0_0 + ég iDSO ~ 1 (19)
NIER Bz Al Y Bz
ios’ ios® 00
whereY @'z} 1> G0z is a price index of land and. B ®z%/Y. B0zS
is a price index of structures. Equation (19) deposes the overall house price index

into structures and land components; the weights > a7z 1> ,[&°Z) +B°2%]
and§ =% B2/ D @7 +3°2%] are estimated shares of land and structures
in the total value of property sales in period GeTdouble imputation method ensures
that the weights sum to unity.

The price indexes of land and structures in (18)Llaspeyres-type indexes and
can be written as weighted averages of price w@atior the individual properties. For
example, the Laspeyres price index of land can iew asziDSO § (a; /a? ) where
the weights§) =&z /> _,a°z for the price relativest, /4y reflect the shares of
the properties in the estimated value of land (iafhy}) sold in period 0. Properties with
relatively large value shares, like properties imailthy and sought-after neighborhoods
with large plot sizes and high land prices, theefrave a big influence on the index.

8 Hill and Melser (2008) discuss different typeshetionic imputation indexes in the context of hogsin
For a general discussion of the difference betwestonic imputation indexes and time dummy indexes,
see Diewert et al. (2009) and de Haan (2010).
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An alternative to the Laspeyres price index givgn(1®) is the hedonic double
imputation Paasche price index, defined on the &apof properties sold in period
(t=1....T):

>0
P_W (20)
i0s'
The imputed constant-quality priceﬁé’“) are estimates of the prices that would prevail
in period O if the property characteristics werestn of period, which are estimated as
PV =4°Z + BV 7., where B2V = §° +ZA DL +z “A°D! denotes the period 0
constant-quality price of structures. By substitgtthe constant-quality prices and the
predicted prices' = 4!z + 'z, into equation (20), the imputation Paasche index c

be written as

Y laiz zs] 2.4'7, > Bz

Phpasche = <y S t8 , (21)
~0_t O(t) t o(t) t
Ylacz, + 2. &7 AR
iost ios! iost

where' @'z 1> a0z and).  B'zs1Y. B’z are Paasche price indexes
of land and structures, which are weighteddf§) =>" a7z /> [d’7 + 307 ]
and8® =% Bz s1Y . 077 + +B°VZ.]. The weights are now of a hybrid nature
and reflect the shares of land and structuresaregimated total value of property sales
in periodt, evaluated at base period prices.

A drawback of the above indexes is that they asethan the sample of either
the base period or the comparison petidalt not on both samples. When constructing
an index going from O tg the sales in both periods should ideally be takmaccount
in a symmetric fashion. The double imputation Figirece index

[PLC:)atspeyres PPO;aschJ} (22)

does so by taking the geometric mean of the Laggsegnd Paasche price indexes. In

POt

Fisher

the empirical section of the paper, we will estienall three types of indexes. An exact
decomposition of the Fisher index into structuned Eand components is not possible.
Due to the fixed weights, the Laspeyres index @amd@écomposition are relatively easy
to explain. So, even though we prefer the Fishéexnwe are inclined to implement the

Laspeyres index in statistical practice when theewcal differences are small.
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5. Empirical evidence

5.1 The data set

The data set we will use was provided by the Dais$ociation of real estate agents. It
contains residential property sales for a smajyl (@opulation is around 60,000) in the
northeastern part of the Netherlands, the cityASf and covers the first quarter of 1998

to the second quarter of 2008. Statistics Nethdddras geocoded the dafde decided

to exclude sales on condominiums and apartmente $ire treatment of land deserves
special attention in this case. The resulting totahber of sales in our data set during
the ten-year period is 6,397, representing apprateim 75% of all residential property

transactions in “A”.

The data set contains information on the time &#,dsansaction price, a range
of characteristics for the structure, and chargttes for land. We included only three
structural characteristics in our models, i.e.plesfioor space, building period and type
of house. For land, we used plot size and postoodegitude/longitude. After removing
44 observations with missing values, transactiaoeprbelow €10,000, more than 10
rooms, or ratios of plot size to structure sizeafs floor space) larger than 10, we were
left with 6,353 observations during the samplequri

Table Al in the Appendix reports summary statisbigsyear for the numerical
variables. The average transaction price signiflgancreased from 1998 to 2007 and
then slightly decreased during the first half oD2(Qwhen the financial crisis started).
The urban area of the city of “A” seems to haveagxjed along the east-west axis; the
standard deviation of the x coordinate in laterrges generally much larger than that in
earlier years.

5.2 Estimation results for hedonic models

Given the small size of the city of “A” and theagVely low number of observations,
we decided to use annual data; in future work wepsobably be using bi-annual data.
Three normalized hedonic equations were estimabedtel (8), which has no location
characteristics at all (denoted as OLS in the sahted figures below), model (10) with
8 postcode dummy variables (OLSD), and model (1) property-specific land prices
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(MGWR). The last model was estimated by mixed gaplgically weighted regression
using the software package GWRA.0.

Considering that the property transactions aresxenly distributed across space,
we used the adaptive bi-square function to consth&weighting scheme. In this case,
the bandwidth is generally referred to as the wimdae, and its selection procedure is
equivalent to the choice of the number of nearegghibors. We derived the optimal
bandwidth using the ‘Golden Section Search’ apgrdesed on minimizing CV scores
in a window-size range of 10% to 90%. There is igus optimal window size for each
annual sample in terms of prediction power; the $2ures indicated that it was around
10% for most of the years, except for 1998 (51%)12(36%), and 2003 (29%). Yet,
for the construction of price indexes, we wouldfere fixed window size for all years,
especially since the number of sales is almostlg\samead across the whole period. So
we have chosen a window size of 10% for every yleading to 60 nearest neighbors
that were used in the estimation of the MGWR madels

To compare the performance of the three propelitte pnodels, two statistics
were calculated, the Corrected Akaike Informatiaiigdion (AICc) and the Root Mean
Square Error (RMSE). The AICc takes into accouatttade-off between goodness-of-
fit and degrees of freedom and is defined for MGWé&tels by’

AICc=2nIn(d) +nIn(2m) + n(Lr(S)j

n—-2-tr(S)
where J is the estimated standard deviation of the egontandtr(S) the trace of the
hat matrix described in section 3.2. The RMSE messthe variability of the absolute

prediction errors of the models and is given by

_1 o2
RMSE=-— /iZ(yi )7 .

The AICc and RMSE for each type of model are showhable 1. According to
a rule of thumb mentioned by Fotheringham et @083, if the difference in the AlCc
for two models is larger than 3, a significant eliince exists in terms of performance.
It can be seen that the OLSD model performs mutiebinan the OLS model in all of

the periods, which is not so surprising, and im tilmat the MGWR model outperforms

° The software can be downloaded free of charge fitips://geodacenter.asu.edu.

2 The AICc expressions for the OLS and OLSD modedy bre found in e.g. Hurvich and Tsai (1989).
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the OLSD model. The same ranking is found if theFEMs used to assess the models.
These results suggest that land prices indeeda@pss space and that MGWR does a

good job in estimating such nonstationarity.

Table 1: Model estimation and comparison

OLS OLSD MGWR

AlCc  RMSE AlCc dAIGo, RMSE dRMSk, AlCc dAIC,; RMSE dRMSE;
1998 6666.26 101.77 6629.82 -36.44 96.96 -4.81 6599.71 -30.11 91.18 -5.78
1999 7145.61 155.52 7110.61 -35.00 148.37 -7.15 7054.04 -56.57 136.98 -11.39
2000 7380.38 166.91 7342.49 -37.89 158.99 -7.92 7260.25 -82.24 143.44 -15.55
2001 7499.41 154.14 7450.69 -48.72 145.64 -8.50 741458 -36.11 137.21 -8.43
2002 7781.70 157.26 771456 -67.14 146.61 -10.65 7703.18 -11.38 141.05 -5.56
2003 7927.15 173.70 7877.13 -50.02 164.30 -9.40 7866.85 -10.28 158.42 -5.88
2004 7992.75 161.12 7970.64 -22.11 156.08 -5.04 7950.46 -20.18 149.29 -6.79
2005 8191.19 172.02 8124.69 -66.50 160.87 -11.15 8071.11 -53.58 149.51 -11.36
2006 8736.88 191.27 8717.40 -19.48 186.03 -5.24 8688.51 -28.89 176.35 -9.68
2007 9094.15 183.55 9068.06 -26.09 177.89 -5.66 9037.90 -30.16 168.44 -9.45

Note dAICyindicates the difference of AICc between OLS andSOl while dAIG; indicates the

difference of AICc between OLSD model and MGWR; dB, anddRMSE;; have similar meanings.

Table 2: Summary statistics for estimated land pries from the MGWR model

Min Max Median Mean Std deviation
1998 0.44 97.18 49.21 44.97 21.74
1999 76.13 195.23 146.48 141.70 30.23
2000 81.62 260.38 196.86 187.82 39.88
2001 89.05 227.31 182.73 173.00 34.00
2002 158.41 305.99 242.15 234.85 33.52
2003 55.03 196.84 142.73 133.84 37.21
2004 79.74 236.14 174.35 171.70 35.43
2005 109.47 276.13 187.90 181.74 36.08
2006 55.37 208.72 142.75 131.99 33.61
2007 58.54 223.41 166.35 164.82 31.86
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Table 2 contains summary statistics for the prieegguare meter of land for the
transacted properties, estimated using MGWR. Tleeage estimated land price is quite
volatile; the change over time differs greatly froimat of the average transaction price
of the properties (see Table A.1 in the Appendidllowing a sharp increase in 1999,
the estimated average land price peaked in 20@@&renced a dramatic drop in 2003,
and then increased again. The value in the stayBag 1998 of approximately 45 euros
per square meter of land is extremely low. This &dsg impact on the corresponding
land price indexes, as we will see in section 5.3.

As an illustration of the estimated hedonic modile,2007 parameter estimates
for the structure characteristics are given in @&hlNote that almost all estimates differ
significantly from zero at the 1% level. Dummy \adoes for dwellings built after 2000
and for detached houses were not included, andesmtercept term measures the price
of structures per square meter of living spacee(iros) for detached houses built after
2000. The estimated intercept for MGWR is rathghhin comparison with OLSD. For
each model, there is a clear tendency for strustiréecome less expensive as they are
getting older. Also, detached dwellings are morpeasive than other types of houses,
which accords with a priori expectations.

Table 3: Parameter estimates for structural characagristics, 2007

OLS OLSD MGWR

Intercept 1561.00** 1472.04** 1633.70**

(46.93) (55.59) (75.35)

Building period:1960-1970 -367.23** -310.09** -411.55**
(26.85) (36.97) (45.21)

Building period:1971-1980 -308.01** -255.16** -378.17**
(24.19) (35.68) (44.86)

Building period:1981-1990 -230.45** -178.98** -259.74**
(24.21) (34.25) (45.46)

Building period:1991-2000 -54.42* -58.87* -124.04**
(22.41) (27.87) (38.28)

Terrace -326.68** -286.66** -309.05**

(35.80) (36.78) (42.04)

Corner -303.89** -280.98** -278.44**

(32.67) (32.67) (35.04)

Semidetached -156.63** -165.54** -195.84**

(49.37) (49.85) (52.39)

Duplex -171.43** -149.10** -170.19**

(31.49) (31.63) (33.94)

Note: Standard errors in brackets;** and * dendagmificance at the 1% and 5% level, respectively.
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5.3 A comparison of different hedonic price indexes

Changes in average property prices and their laddstucture components are affected
by compositional change and quality change of theetd properties. The hedonic house
price indexes and the land and structures compsrtleat we estimated control for these
effects, and it will be interesting to see how tlaeg affected by the choice of hedonic
model (OLS, OLSD, or MGWR). We have estimated chdirather than direct indexes
because imputing the ‘missing prices’ over a lorgqa of time may not be useful and
because the land and structures will be updatedadiyn A disadvantage of chaining is
that the resulting indexes cannot be exactly deasexgb since they are not consistent in
aggregation.

In Figures 1-3, the estimated double imputationolnéxlLaspeyres, Paasche and
Fisher price indexes for the property as a whotepdotted, based on the three models.
For each model, the (chained) Laspeyres indexabitse the Paasche, as expected. The
indexes based on OLSD and MGWR are almost the strmetifferences can hardly be
noticed in the graphs. So, for the house pricexnttee inclusion of a limited number of
location dummy variables produces satisfactoryltesdespite the fact that the OLSD
model performs not as good as MGWR. Not using lonaihformation at all makes a
difference though: the Laspeyres and Paasche index@a the OLS model seem to be
biased downwards and upwards, respectively. Treebialmost cancel out in the Fisher
index, which is very similar to the Fisher indexesduced with the other two models.

Figure 1: Chained hedonic imputation Laspeyres howesprice index
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Figure 2: Chained hedonic imputation Paasche houggice index
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Figure 3: Chained hedonic imputation Fisher house ffice index
and official SPAR index
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We tentatively conclude that the double imputattésher house price index is
insensitive to the treatment of location in the dred model. The official house price
index for the Netherlands is also plotted in FigBféOur hedonic indexes show a more
modest price increase. There may be at least tamons for this: house prices in the

" The official index is based on the Sale Price Ajgal Ratio (SPAR) method. For more information on

this method, see de Haan et al. (2009) and de ¥tiak (2009).
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city of “A” appreciated less compared to the reflsth@ country, or our indexes better
adjust for quality changes. We think that the sda@ason is more important.

The picture changes when we look at the Fisherxiesléor the price of land in
Figure 4. The OLS- and OLSD-based indexes are a&inbut the MWGR-based index
behaves differently. For example, between 19981899 the MWGR-based index rises
much faster than the other two indexes, and bet2866 and 2006 the MWGR-based
index rises whereas the other two indexes fall.s€hresults are surprising; for land in
particular, we would expect the OLSD-based indebdcsimilar to the MWGR-based

index since both indexes explicitly account fordtan.

Figure 4: Chained hedonic imputation Fisher price mndexes for land
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Figure 5 shows the hedonic imputation Fisher pndexes for structures based
on the three models. While the differences caneaghored, they are less pronounced
than the differences obtained for land. This isd@cordance with a priori expectations:
location should affect the price of land, and isdeled as such, but should leave the
price of structures unaffected.

Figures 4 and 5 raise a number of issues. Thei$sse is whether the trends of
the (Fisher) indexes for land and structures amagpble. For land, this will be difficult
to check because information on the price chandanaf is currently unavailable for the
Netherlands. For structures we use the nationwfiidad construction cost index (CClI)
for dwellings, published by Statistics Netherlanas,a benchmark. This index, rebased
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to 1998=100, is also plotted in Figure 5. During fhist half of the sample period, our
price indexes for structures exhibit roughly thenearend as the construction cost index.
During the second half of the sample period, thestroction cost index flattens, but the
structures price indexes keep rising. A constructiost index does not necessarily have
to be identical to an implicitly derived price indfr structures, and it may suffer from
some measurement problethbut this divergence is nevertheless puzzling.

Figure 5: Chained hedonic imputation Fisher price mdexes for
structures and official construction cost index
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Importantly, the overall property price indexes afiected most by the changes
in structures prices; the average estimated vdiaeesfor structures across the sample
period is 0.73 for the OLS and OLSD models, and Gor MWGR. Figure 6 shows the
OLSD-based estimates of the value shares for laddsauctures. The volatility of the
shares in Figure 6, and also the volatility of thige indexes for land and structures in
Figures 4 and 5, is striking. We would not expéet true’ shares and price indexes to
be very volatile. The volatility can be caused bghtems such as the small number of
observations, multicollinearity, heteroskedasticay outliers in the data. Of course, the
small-number problem can only be circumvented bggidata for a bigger city, which
could also enable us to estimate bi-annual insdéadnual indexes.

2 The flattening of the construction cost index pbetween 2003 and 2007 has been subject of debate
the Netherlands. The discussion arose becausetistraction cost index increased by only 4.9%, Wwhic
was even lower than the increase in the CPI of 5\88tle house prices were still rapidly rising.
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Figure 6: Estimates of value shares of land and sictures,
OLSD-based
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Figure 7: Chained Fisher price indexes for land andtructures,
OLSD-based
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the builder's model. It resulted in price changasland and structures that consistently
had opposite signs. In Figure 7, the OLSD-baseleFimdexes for land and structures
from Figures 4 and 5 are copied. In some years,itikk002, the price changes for land
and structures have opposite signs, but in otharsydhe price changes are in the same
direction. We therefore suspect that multicollimgas not the main issue involved. The

Multicollinearity was a big problem faced by Diewet al. (2015) in estimating
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variance inflation factor (VIF) for the estimatedrameters for the ratio of plot size and
structure size did not point to significant multioeearity either.

The use of the property price per square meteiviofgl space as the dependent
variable in the models (i.e. the normalizationghkreduced multicollinearity, but it can
have led to instability of the parameter estimédedand and structures if it resulted in
‘classical’ heteroskedasticity where the regressesiduals grow with increasing ratios
of plot size to structure size. For the OLS and OlrBodels, the Breusch-Pagan test did
indeed point to heteroskedasticityA related problem is the relatively small variatio
in the plot size to structure size ratios.

Scatterplots of the normalized prices against tbegze to structure size ratios
showed some extreme outliers; most of them arbarhigher ranges of the normalized
prices and ratios. To check if deleting outliersuldostabilize the indexes, we removed
all observations with ratios of plot size to sturetsize larger than 5 (instead of 10), re-
ran OLSD regressions and calculated chained dauipetation price indexes again.
The new OLSD-based Fisher indexes for land andtsiress are depicted by the dashed
lines in Figure 7. Compared with the initial indexie volatility is slightly reduced, but
the trends have changed dramatically: the new tstr@igrice index sits above the old
index and the new land price index sits far belbe old one. This troubling result is
touched upon in section 6 below.

6. Discussion and conclusions

Land is typically not explicitly included in heda@nmodels for house prices, which can
bias the results. Ignoring spatial nonstationasftiand prices can also generate bias. As
far as we know, the present paper is the firsihgiteto account for nonstationarity of
land prices in the construction of hedonic impatathouse price indexes using spatial
econometrics. We linearized the ‘builder's modebmosed by Diewert, de Haan and
Hendriks (2015), allowed the price of land to vatythe individual property level, and
estimated the model for the normalized propertgeo(i.e., the price of the property per
square meter of living space) by MGWR, a semi-patammethod, on annual data for

13 Actually, we should have used a heteroskedastiditysistent estimator for the standard errors én th
OLS and OLSD models. Note that there is no fornedéitoskedasticity test for the MWGR model.
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the Dutch city of “A”. We then constructed chainetputation Laspeyres, Paasche and
Fisher indexes and compared them with price indbgssd on more restrictive models:
a model with no variation in land prices and a madgere land prices can vary across
postcode areas, both estimated by OLS.

The Fisher house price indexes were quite inseaditi the choice of model, but
the Laspeyres and Paasche indexes for the ‘fixad price model differed from those
for the models where location was explicitly inadald The use of postcode area dummy
variables produced price indexes very similar theies obtained by MGWR. Hill and
Scholz (2014) also concluded that the use of gesxtddta and spatial econometrics did
not improve hedonic imputation house price indeoses models with postcode dummy
variables'’ This result is reassuring for statistical agenties do not have the expertise
or resources to use more sophisticated methods.

For some purposes, separate price indexes fordaddtructures are needed. As
was demonstrated by Diewert, de Haan and Hend2ik&5), this can be a difficult task.
A potential problem is multicollinearity, which ads because (in the ‘builder’s model’)
the value of the property is split into the valddamd and the value of structures: if the
estimated price of land is too high, then the esti&d price of structures will be too low,
given plot and structure size. Probably due tortbemalization of the property price,
our estimates did not appear to suffer from semarkicollinearity.

Yet, our estimated price indexes for land and stimes were very volatile. We
can think of at least two reasons. First, the ndimagon of the property price resulted
in heteroskedastic errors (and relatively littleiaton in the plot size to structure size
ratios), leading to unstable coefficients and vi@ahdexes. Thus, although we reduced
multicollinearity, at the same time we introduceddnoskedasticity.

The second reason for the volatility of the esteddand and structures indexes
might be the linear relation postulated in our mMedetween normalized property price
and plot size to structure size ratio. Most likeéhg ‘true’ relationship is nonlinear, and
the linear specification produced outliers in tihghler ranges. The misspecification was
confirmed when we deleted all observations with plpe to structures size ratios larger
than 5; the volatility of the land and structureprindexes from the OLSD model (with
postcode dummy variables) was reduced somewhahéutends changed significantly.

1 Hill and Scholz (2014) treated location as a safgacharacteristic in their hedonic models in thay
estimated property-specific shift terms for therallgproperty price rather than the price of land.
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The probable cause is that the price of land i®ddent on the size of the land plot: the
price per square meter of land tends to fall wittreasing plot size. Diewert, de Haan
and Hendriks (2015) adjusted for this type of noedirity using linear splines to model
the price of land. In future work we want to modifyr models in the same spirit, either
by using splines as well or by explicitly specifgisome nonlinear function.

What worries us most is the extreme volatility loé tMWGR-based indexes for
land and structures. The MWGR method makes useicdgpof neighboring properties,
and since neighboring properties may be expectégvte similar plot sizes, our results
are unexpected and counterintuitive. We lack araggtion of this finding, but it does
suggest that the semi-parametric MGWR approachusexlinherently unstable results.
Thus, while the MWGR model outperforms the othen twodels in terms of statistical
criteria (AICc and RMSE) and produces a house pridex that is very similar to the
OLSD model, it aggravates instability and doessesm appropriate for estimating the

land and structures components.
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Appendix

Table A 1: Summary statistics by year

Total 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Obs. 6353 550 551 563 579 599 601 613 622 653 684 38 3
Transaction price (Euro)

Mean 159654.54 96461.46 118282.01 132876.58 146231151706.44 163434.80 175121.07 182076.49 191212149038.99 196620.71

S.D. 74337.38 42692.67 54082.15 56393.94 58437.8B46%20 64048.12 82963.12 70840.62 76253.88 83984.82259.77
Unit price (Euro/m)

Mean 1249.28 748.42 934.22 1044.42 1172.44 1244.20286.49 1355.08 1423.38 1467.40 1520.72 1510.61

S.D. 380.79 217.29 282.93 288.05 298.26 291.71 6888. 297.94 298.21 324.48 350.24 341.84
Parcel size (R)

Mean 255.99 243.78 262.41 249.28 244,72 239.37 7855. 262.63 255.93 264.42 275.15 258.76

S.D. 163.27 175.75 175.04 162.38 137.39 115.26 3¥64. 165.98 164.14 150.79 198.42 168.94
Floor space ()

Mean 126.15 126.43 125.36 126.72 123.41 122.01 8325. 126.56 126.29 128.57 128.49 128.14

S.D. 30.91 24.08 31.94 32.31 29.71 28.12 30.67 736.8 30.75 31.12 30.10 32.69
Ratio of parcel to floor space

Mean 1.99 1.86 2.07 1.93 1.97 1.97 1.99 2.02 1.97 012 2.06 1.97

S.D. 0.90 0.95 1.08 0.86 0.87 0.80 0.90 0.85 0.84 790 1.03 0.92
XCoordinate

Mean  233714.07 233973.13 234204.27 234185.17 238%930234003.15 233633.95 233484.33 233535.37 233824233385.63 233324.00

S.D. 1810.91 1458.76 1426.00 1549.06 1728.41 1712.31794.27 1985.32 1930.81 1916.71 1946.71 2011.40
YCoordinate

Mean  558584.51 558727.16 558799.54 558822.96 558648558716.46 558521.05 558394.83 558548.00 55B830558404.22 558447.70

S.D. 1406.93 1441.34 1464.41 1430.78 1426.64 1911.6 1450.61 1414.46 1352.07 1322.21 1381.35 1240.58




