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Abstract:  Location is capitalized into the price of the land the structure of a property is 

built on, and land prices can be expected to vary significantly across space. We account 

for spatial variation of land prices in hedonic house price models using geospatial data 

and a nonparametric method known as geographically weighted regression. To illustrate 
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and structures components are constructed for a city in the Netherlands and compared to 
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1. Introduction 

Housing markets have two distinct features: every house is unique and houses are sold 

infrequently. This is problematic for the construction of house price indexes because the 

usual matched-model method, where the prices of goods are tracked over time, breaks 

down. Hedonic regression methods and repeat sales methods deal with these problems. 

The uniqueness of properties is mainly due to location. Within a single neighborhood, 

the value of two properties with similar structures can differ significantly, depending on 

the exact locality. 

Repeat sales indexes fully control for location since they track the prices of the 

‘same’ properties over time (in a regression framework). The problem with repeat sales 

methods is threefold. First, because they only use matched pairs of houses during the 

sample period, these methods throw away information on single sales and are therefore 

inefficient. Second, standard repeat sales methods do not adjust for quality changes of 

the individual houses. Third, these methods cannot provide information on the shadow 

prices of the various property characteristics and thus do not allow the estimation of, for 

example, price indexes of the land the structure sits on. Given the problems with repeat 

sales methods, we focus on hedonic indexes. 

Traditional hedonic price indexes also have a number of disadvantages. First, 

data on housing characteristics must be available. Second, location is typically included 

in hedonic models at some aggregate level, such as postcode areas, rather than at the 

individual property level, potentially leading to ‘location bias’. Third, land is usually not 

included as an independent variable, again potentially giving rise to bias and making it 

impossible to estimate price indexes for land. Geospatial data, i.e. information on the 

exact location in terms of geographic coordinates such as longitude and latitude, can 

help attenuate the latter disadvantages. Our aim is to show how this can be done and 

how hedonic house price indexes can be constructed accordingly. 

A general problem with the estimation of hedonic models for housing is omitted 

variables bias. Not properly accounting for location can be a major cause of bias and 

often leads to spatial autocorrelation of the error terms. As mentioned above, the easiest 

way to deal with the problem is to include dummy variables for postcode areas. Another 

straightforward approach, which has also been frequently investigated empirically, is to 

include explanatory variables for all kinds of amenities. While being of interest since it 
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provides information on the effect of those amenities on the prices or price changes of 

properties, this approach is very data intensive. Importantly, both methods cannot fully 

adjust for location, and so some omitted variables bias and spatial autocorrelation will 

most likely remain. 

In recent years, more sophisticated methods have been put forward to handle the 

problem of spatial autocorrelation. Spatial error models attempt to explicitly model the 

spatial autocorrelation while spatial lag models include the value of neighbor properties 

in the model. Both methods can be used in a time dummy hedonic framework, where 

the model is estimated on pooled data for the whole sample period and price indexes are 

computed from the time dummy coefficients (Dorsey et al., 2010; Hill et al., 2009). It is 

also possible to apply these methods in a hedonic imputation framework (Rambaldi and 

Rao, 2011; 2013). Another method uses a spatio-temporal filter which eliminates spatial 

autocorrelation in order to estimate an index for a dwelling with specific characteristics 

(Pace et al., 1998; Tu et al., 2004; Sun et al., 2005). 

A disadvantage of the above parametric methods is that a spatial weight matrix 

has to be specified a priori but that its precise structure is unknown. Nonparametric or 

semi-parametric methods are more suitable to account for spatial dependence. Semi-

parametric methods have become increasingly popular. The effect of variables relating 

to location, for example, can be estimated nonparametrically in ‘characteristics space’ 

whereas the effect of variables relating to the structure of the property can be estimated 

parametrically, as in traditional hedonic models. 

In this paper, we assume that location affects the price of land but not the price 

of structures. That is, we postulate that land prices vary across space whereas the price 

of structures is ‘fixed’. We deal with this type of spatial nonstationarity using a semi-

parametric approach known as Mixed Geographically Weighted Regression (MGWR) 

in which the land prices are estimated by Geographically Weighted Regression (GWR), 

a nonparametric method proposed by Brunsdon et al. (1996) and Fotheringham et al. 

(1998a). An additional advantage is that we will be able to plot a detailed map of land 

prices. 

Apart from the fact that it deals with spatial nonstationarity in a straightforward 

way, GWR enables us to model the local form of autocorrelation. Moreover, it allows 

land prices to vary not only across space but also across time by estimating the model 

for each period separately. The latter is a prerequisite for the construction of hedonic 
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imputation price indexes. In conclusion, GWR is a rather flexible method, which can be 

seen as a generalization of traditional hedonic methods. 

We are specifically targeting statistical agencies engaged in the compilation of 

house price indexes. This has several consequences. The agencies should have access to 

geocoded data, but this is hardly a problem these days. The methods applied should be 

relatively easy to explain. Most importantly, the price indexes should be non-revisable. 

This means that the use of the time dummy method, where previously published index 

numbers change when the sample period is extended and new data is added, is ruled out. 

This strengthens the case for constructing hedonic imputation indexes. 

Furthermore, our paper tries to fill a gap in the recent Handbook on Residential 

Property Price Indices (Eurostat et al., 2013) in which the use of geospatial data in the 

estimation of hedonic house price models is not very well covered. 1 The Handbook uses 

data for detached dwellings sold in the Dutch city of “A” from the first quarter of 2005 

to the second quarter of 2008 to illustrate the various methods. We exploit sales data for 

the city of “A” also but extend the data set in three dimensions. We have data from the 

first quarter of 1998 to the second quarter of 2008, so our data set covers a period of 

more than 10 years. Note though that we will use annual rather than quarterly data in 

our empirical work. The range of structural characteristics is much broader than that in 

the Handbook. Finally, we include types of houses other than detached dwellings. 

The paper proceeds as follows. Section 2 outlines some basic ideas. Our hedonic 

model is linear, with non-transformed property price as the dependent variable and size 

of land and size of structures as explanatory variables. A normalized version, with price 

per square meter of living space as the dependent variable, is discussed as well. We also 

address the inclusion of additional characteristics to describe the quality of structures, 

including age of the structure to adjust for depreciation. Section 3 describes how we 

treat location. As mentioned before, location is capitalized into the price of land, and we 

would expect land prices to differ at the property level. The GWR and MGWR models 

and the way in which they are estimated are explained in detail. Section 4 shows how 

we calculate hedonic imputation indexes. Section 5 presents empirical evidence for the 

Dutch city of “A”. Section 6 discusses the results, identifies potential improvements and 

concludes. 

                                                      
1 For an excellent introduction, see Hill (2013). 
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2. A simplification of the ‘builder’s model’ 

2.1 Some basic ideas 

Our starting point is the ‘builder’s model’ proposed by Diewert, de Haan and Hendriks 

(2011) (2015). It is assumed that the value of a property i in period t, t
ip , can be split 

into the value t
iLv  of the land the structure sits on and the value t

iSv  of the structure: 

t
iS

t
iL

t
i vvp += .                 (1) 

The value of land for property i is equal to the plot size in square meters, t
iLz , times the 

price of land per square meter, tα , and the value of the structure equals the size of the 

structure in square meters of living space, t
iSz , times the price of structures per square 

meter, tβ .2 After adding an error term tiu  with zero mean, model (1) becomes 

t
i

t
iS

tt
iL

tt
i uzzp ++= βα .               (2) 

The (shadow) prices of both land and structures in (2) are the same for all properties, 

irrespective of their location. In section 3 we relax this assumption and allow for spatial 

variation of, in particular, the price of land. The ‘builder’s model’ takes depreciation of 

the structures into account, a topic we address in section 2.2. 

Equation (2) can be estimated on data of a sample tS  of properties sold in period 

t. This approach, however, suffers from at least three problems. First, the model has no 

intercept term, which hampers the interpretation of 2R  and the use of standard tests in 

Ordinary Least Squares (OLS) regression. Second, a high degree of collinearity between 

land size and structure size can be expected, so that tα  and tβ  will be estimated with 

low precision. Finally, heteroskedasticity is likely to occur since the absolute value of 

the errors tends to grow with increasing property prices. 

Our next step is to divide the left hand side and right hand side of equation (2) 

by structure size tiSz , giving 

t
i

tt
i

tt
i rp εβα ++=* ,                (3) 

where t
iS

t
i

t
i zpp /* =  is the normalized property price, i.e. the value of the property per 

square meter of living space, t
iS

t
iL

t
i zzr /=  denotes the ratio of plot size and structure 

                                                      
2 We follow Diewert, de Haan and Hendriks (2015) who used living space (usable floor space) in square 

meters as a measure of size of the structures. Alternative measures are also possible, for instance the 

volume of the structure in cubic meters. 
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size, and t
iS

t
i

t
i zu /=ε . This resolves the first two problems as the model now has an 

intercept term and a single explanatory variable. 

However, the normalization is unlikely to resolve the issue of unstable parameter 

estimates. Dividing by tiSz  is a means of adjusting for heteroskedasticity when the error 

variance in (2) is proportional to the square of structure size; estimating equation (3) by 

OLS is equivalent to estimating (2) by Weighted Least Squares (WLS) using weights 

equal to 2)/(1 t
iSz . This kind of error variance seems quite extreme, and so this weighting 

system may not be helpful to reduce the heteroskedasticity problem. Also, the ratios tir  

(and the normalized values *tip ) will exhibit relatively little dispersion. 

Some statistical agencies measure and publish changes in normalized property 

prices, often the price per square meter of structures in order to adjust for compositional 

change of the properties sold. We do not recommend this approach because it is changes 

in unadjusted property prices and price changes most people will be interested in. Yet, 

given that (3) is a straightforward regression model, including an intercept term, we 

favor specification (3) over (2). 

2.2 Adding structures characteristics 

A potential weakness of hedonic modeling for housing is omitted variables, leading to 

biased (OLS) parameter estimates and predicted prices. Omitted variables in the models 

(2) and (3) can relate to land or structures. Omitted factors relating to land are addressed 

in section 3. Here we describe our approach to including additional characteristics for 

structures. There are two issues: depreciation and renovation of the structures has not 

been taken into account so far, and the use of size as the only measure of quality of the 

structures seems too simplistic. 

Following Diewert, de Haan and Hendriks (2015), we initially assume a straight-

line depreciation model. The adjusted value of the structure is t
iS

t
i

tt za )1( δβ − , where 
tδ  is the depreciation rate and t

ia  is age of the structure. Information on renovations at 

the level of individual dwellings is unavailable so that t
i

taδ−  measures the effect of net 

depreciation, i.e. the combined effect of ‘true’ depreciation and renovation. Written in 

linear form, the adjusted structures value is t
iS

t
i

ttt
iS

t zaz δββ − . Adding the second term 

to the right-hand side of equation (2) yields 

t
i

t
iS

t
i

ttt
iS

tt
iL

tt
i uzazzp +−+= δββα .              (4) 
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We do not know the exact age of the structures, but we do know the building 

period in decades, from which we can calculate approximate age in decades. Thus, age 

in our data set is a categorical variable. The net depreciation rate is of course categorical 

as well.3 Using multiplicative dummy variables tiaD  that take on the value 1 if in period 

t property i belongs to age category a ),...,1( Aa =  and the value 0 otherwise, and after 

reparameterizing such that t
iS

t zβ  is no longer a separate term, model (4) is equivalent to 
t
i

A

a

t
iS

t
ia

tt
iL

tt
i uzDzp ++= ∑ =1

γα . To be able to use standard estimation techniques, we 

modify this model as follows: 

t
i

A

a

t
iS

t
ia

t
a

t
iL

tt
i uzDzp ++= ∑

=1

γα .               (5) 

No restrictions are placed on the parameters t
aγ , and the new functional form is 

neither continuous nor smooth. This is somewhat problematic from a theoretical point 

of view, because it is at odds with the initial straight-line depreciation model. On the 

other hand, our approach introduces some flexibility. Age of the structures is not only 

important for modeling depreciation, it can also be seen as an attribute of the dwelling 

itself in that houses built in a particular decade are more in demand than other houses, 

perhaps for their architectural style or for other reasons. 

Diewert, de Haan and Hendriks (2015) also show how to incorporate the number 

of rooms. The new value of the structures becomes t
iS

t
iR

tt
i

tt zza )1)(1( µδβ +− , where tµ  

is the parameter for the number of rooms t
iRz .4 The linear form for this expression is 
t
iS

t
iR

t
i

tttt
iS

t
i

ttt
iS

t
iR

ttt
iS

t zzazazzz µδβδβµββ −−+ . Using dummies t
irD  for the number of 

rooms with the value 1 if in period t the property belongs to category r ),...,1( Rr =  and 

the value 0 otherwise, and reparameterizing again, the extension of (5) becomes 

t
i

A

a

R

r

A

a

R

r

t
iS

t
ir

t
ia

t
ar

t
iS

t
ir

t
r

t
iS

t
ia

t
a

t
iL

tt
i uzDDzDzDzp ++++= ∑ ∑ ∑∑

= = = =1 1 1 1

ηλγα .          (6) 

Next, in order to save degrees of freedom, we ignore the ‘second-order’ effects 

due to the interaction terms t
ir

t
ia DD , yielding 

                                                      
3 Diewert, de Haan and Hendriks (2015) treated approximate age as a continuous variable, despite the fact 

that it is in fact categorical. They found that the estimated net depreciation rate was quite volatile, which 

was not consistent with their a priori expectation of a stable depreciation rate, and subsequently estimated 

models where the depreciation rate was kept constant over time. However, we are not interested in the 

depreciation rate itself and accept any volatility. 

4 Note that Diewert, de Haan and Hendriks (2015) did not allow the parameter to change over time. 
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t
i

t
iS

R

r

t
ir

t
r

A

a

t
ia

t
a

t
iL

tt
i

A

a

R

r

t
iS

t
ir

t
r

t
iS

t
ia

t
a

t
iL

tt
i uzDDzuzDzDzp +







 ++=+++= ∑∑∑ ∑
=== = 111 1

λγαλγα         (7) 

The second expression shows that the price of structures, i.e. the price per square meter 

of living space, equals t
r

t
a λγ +  for properties in age class a ),...,1( Aa =  and category r 

),...,1( Rr =  for number of rooms. A high degree of multicollinearity can occur among 

the various structures components, but we do not worry about this because we are only 

interested in the combined effect. Multicollinearity between these components and plot 

size might still be a problem though. Dividing the first expression in (7) by tiSz  gives 

t
i

A

a

R

r

t
ir

t
r

t
ia

t
a

t
i

ttt
i DDrp ελγαθ ++++= ∑ ∑

−

=

−

=

1

1

1

1

* .             (8) 

We included an intercept term tθ  and excluded dummy variables for age class A and 

category R for the number of rooms to identify the model.  

Model (8) is a straightforward estimating equation for the overall property price 

per square meter of living space. Additional categorical variables for structures can be 

included in a similar way as was done for the number of rooms. As a matter of fact, in 

our empirical work we will use type of house instead of the number of rooms. 

3. Land and spatial nonstationarity 

3.1 Location and the price of land 

Location is the most important omitted variable in the hedonic models presented so far. 

In many empirical studies, location is treated as a ‘separate characteristic’ by including 

additive locational dummy variables in models for the overall property price. This is not 

the solution we prefer. Location is definitely capitalized into property prices. However, 

the price of structures is most likely to be approximately constant across space, at least 

within relatively small regions or cities. It is the price of the land the structure is built on 

that can vary significantly across different locations, even within a single neighborhood. 

The question then arises as to how this spatial variation, or spatial nonstationarity as it is 

sometimes referred to, in the price of land should be modeled. 

We could make the simplifying assumption that the price of land varies across 

postcode areas but is the same within each postcode area k ),...,1( Kk =  and denoted by 
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t
kα . Using multiplicative postcode dummy variables ikD , which take on the value of 1 if 

property i belongs to k and the value 0 otherwise, an improved version of model (7) for 

the unadjusted property price is 

t
i

A

a

R

r

t
iS

t
ir

t
r

t
iS

t
ia

t
a

K

k

t
iLik

t
k

t
i uzDzDzDp +++= ∑ ∑∑

= == 1 11

λγα ,            (9) 

and an improved version of model (8) for the normalized property price is 

t
i

A

a

R

r

t
ir

t
r

t
ia

t
a

K

k

t
iik

t
Kk

tt
i DDrDp ελγαθ ++++= ∑ ∑∑

−

=

−

==

1

1

1

11
)(

* .          (10) 

The assumption of equal land prices within postcode areas could be too crude, 

depending of course on the level of detail of the postcode system. Generalized versions 

of the models (9) and (10) are found by assuming that the price of land can in principle 

differ at the individual property level, i.e. at the micro location. We denote the property-

specific land price by t
iα , yielding 

t
i

A

a

R

r

t
iS

t
ir

t
r

t
iS

t
ia

t
a

t
iL

t
i

t
i uzDzDzp +++= ∑ ∑

= =1 1

λγα            (11) 

and 

t
i

A

a

R

r

t
ir

t
r

t
ia

t
a

t
i

t
i

tt
i DDrp ελγαθ ++++= ∑ ∑

−

=

−

=

1

1

1

1

* .           (12) 

Models (11) and (12) obviously cannot be estimated by standard regression techniques. 

In section 3.2 we will discuss a semi-parametric approach that does allow us to estimate 

these models. Because the method utilizes data on the prices of neighboring properties 

(in addition to the price of property i itself) to estimate t
iα , it is not necessarily true that 

the use of models (11) or (12) will lead to aggregate price indexes that are very different 

from those obtained by using models (9) or (10). 

3.2 Accounting for spatial variation of land prices 

One method that deals with spatial nonstationarity of property prices is the expansion 

method (Casetti, 1972; Jones and Casetti, 1992). The property price, or in our case the 

price of land, can be seen as an unknown function of the property’s location in terms of 

latitude ix  and longitude iy  or a similar geographic coordinate system. This function 

can be approximated using a Taylor-series expansion of some order; typically, second-
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order approximations are applied. The expansion method makes use of geospatial data 

but is basically parametric as it calibrates a prespecified parametric model for the trend 

of land prices across space (Fotheringham et al., 1998b). 

The method we will apply, referred to as Geographically Weighted Regression 

(GWR), deals with spatial nonstationarity in a truly nonparametric fashion (Brunsdon et 

al., 1996; Fotheringham et al., 1998a).5 Let us remove the structural characteristics from 

model (11) for a moment and thus consider land as the only independent variable. Using 

),( iii yxαα = , the model becomes 

iiLiii uzyxp += ),(α .              (13) 

Note that we have dropped the superscript t for convenience, but it should be clear that 

we estimate all models for each time period separately. Note also that the prices of land 

can be estimated for all points in space, not just for the sample observations, enabling us 

to depict a surface of land prices for the entire study area. 

Model (13) can be estimated using a moving kernel window approach, which is 

essentially a form of WLS regression. In order to obtain an estimate for the price of land 

),( ii yxα  for property i, a weighted regression is run where each related observation j 

(i.e., each neighboring property) is given a weight ijw  )( ji ≠ . The weight ijw  should be 

a monotonic decreasing function of distance ijd  between ),( ii yx  and ),( jj yx . There is 

a range of possible functional forms. In this paper we have chosen the frequently-used 

bi-square function given by: 

( )22 21       if  

0                         otherwise

ij ij
ij

d h d h
w

 − <= 


,            (14) 

where h denotes the bandwidth defining the rate of decrease in terms of distance. The 

choice of bandwidth involves a trade-off between bias and variance. A larger bandwidth 

generates an estimate with larger bias but smaller variance whereas a smaller bandwidth 

produces an estimate with smaller bias but larger variance. This bias-variance trade-off 

motived us to choose the bandwidth by minimizing the cross-validation (CV) statistic 

[ ]∑
=

≠−=
n

i
ii hyyCV

1

2)(ˆ ,             (15) 

                                                      
5 For a comparison of geographically weighted regression and the spatial expansion method, see Bitter et 

al. (2007). 



 10

where )(ˆ hy i≠  is the fitted value of iy  with the observations for point i  omitted from the 

calibration process. 

The nonparametric GWR approach to dealing with spatial nonstationarity of the 

price of land has to be adjusted for the fact that models (11) and (12) include structural 

characteristics with spatially fixed parameters. This leads to a specific instance of the 

semi-parametric Mixed GWR (MGWR) approach discussed by Brunsdon et al. (1999) 

in which some parameters are spatially fixed and the remaining parameters are allowed 

to vary across space. To describe the estimation procedure, it is useful to change over to 

matrix notation. Denoting the number of observations by n, model (11) can be written in 

matrix form as 

uβZαZP ++⊗= SL              (16) 

where T
nn yxyxyx )),(),...,,(),,(( 2211 ααα=α  is a vector of land prices to be estimated, 

⊗  is an operator that multiplies each element of α  by the corresponding element of LZ , 

and SZ  is the matrix of structural characteristics included in model (11), given by 

11 1 12 1 1 1

21 2 22 2 2 2

1 2

S S j S

S S j S

S

n nS n nS nj nS

D z D z D z

D z D z D z

D z D z D z

 
 
 =
 
 
  

Z

L

L

M M O M

L

, 

and T
n ),...,,( 21 βββ=β  is the vector of parameters relating to SZ . 

We follow Fotheringham et al. (2002), who proposed an estimation method that 

is less computationally intensive than the method described by Brunsdon et al. (1999).6 

To economize on notation, we write the GWR hat matrix as 

( ) ( )
( ) ( )

( ) ( )

1

1 1 1 1 1

1

2 2 2 2 2

1

, ,

, ,
,

, ,

T T
L L L L

T T
L L L L

T T
nL L n n L L n n

z x y x y

z x y x y

z x y x y

−

−

−

    
    =
 
 
    

Z W Z Z W

Z W Z Z W
S

Z W Z Z W

M

 

where )],(),...,,(),,(diag[),( 21 iiniiiiii yxwyxwyxwyx =W . The calibration of the model 

consists of four steps: 

                                                      
6 We will broadly describe the actual estimation procedure and present the estimators for the parameters, 

but we do not provide the exact MGWR algorithm. For details, see Fotheringham et al. (2002), Mei et al. 

(2006) and Geniaux and Napoléone (2008). 
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(1) regressing each column of SZ  against LZ  using the GWR calibration method and 

computing the residuals SZSIQ )( −= ; 

(2) regressing the dependent variable P against LZ  using the GWR approach and then 

computing the residuals PSIR )( −= ;  

(3) regressing the residuals R against the residuals Q using OLS in order to obtain the 

estimates RQQQβ TT 1)(ˆ −= ;  

(4) subtracting βZ ˆ
S  from P and regressing this part against LZ  using GWR to obtain 

estimates [ ] )ˆ)(,(),(),(ˆ
1

βZPWZZWZ Sii
T
LLii

T
Lii yxyxyx −= −α . 

The predicted values for the property prices can be expressed as 

LPβZβZPSP =+−= ˆ)ˆ(ˆ
SS ,             (17) 

with [ ] )()()()()(
1

SISIZZSISIZZSISL −−−−−+= − TT
SS

TT
SS . 

The parameter estimates and the predicted property prices depend on the choice 

of weights, hence on the choice of bandwidth h. The optimal value for h is determined 

by minimizing the CV score, as mentioned above. 

4. Hedonic imputation price indexes 

This section addresses the issue of estimating quality-adjusted property price indexes.7 

Suppose that sample data is available for periods Tt ,...,0= , where 0 is the base period 

(the starting period of the time series we want to construct), and suppose model (11) has 

been estimated separately for each period. The predicted property prices, obtained using 

MGWR, are given by ∑∑
−

=

−

=
+++= 1

1

1

1
]ˆˆˆ[ˆˆ

R

r

t
iS

t
ir

t
r

A

a

t
ia

t
a

tt
iL

t
i

t
i zDDzp λγθα . For short, we write 

the predicted price of structures, ∑∑ ==
++ R

r

t
ir

t
r

A

a

t
ia

t
a

t DD
11

ˆˆˆ λγθ , as t
iβ̂  and the predicted 

overall property price as t
iS

t
i

t
iL

t
i

t
i zzp βα ˆˆˆ +=  ),...,0( Tt = . 

We denote the sample of properties sold in the base period by 0S . The hedonic 

imputation Laspeyres property price index going from period 0 to period t is defined by 

∑

∑
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7 In this paper we only discuss sales-based property price indexes. For an explanation of the difference 

between sales-based and stock-based indexes, see Eurostat et al. (2013). 
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Equation (18) may need some explanation. All quantities are set equal to 1 because each 

property is unique. Because the index is based on a single sample, it will not be affected 

by compositional change. Most, if not all, of the properties traded in period 0 are not re-

sold in period t, and the ‘missing prices’ therefore need to be imputed by )0(ˆ t
ip . We have 

also replaced the observable base period prices 0
ip  by predicted prices 0ˆ ip , a method 

known as double imputation.8 

The )0(ˆ t
ip  are estimated period t constant-quality property prices, i.e. estimates of 

the prices that would prevail in period t for properties sold in period 0 if the properties’ 

price-determining characteristics were equal to those of the base period, which serves to 

adjust for quality changes of the individual properties. These constant-quality prices are 

estimated by ∑∑
−

=

−

=
+++= 1

1

001

1

00)0( ]ˆˆˆ[ˆˆ
R

r iSir
t
r

A

a ia
t
a

t
iL

t
i

t
i zDDzp λγθα . For brevity, we use )0(ˆ t

iβ  

for the estimated constant-quality price of structures, ∑∑
−

=

−

=
++ 1

1

01

1

0 ˆˆˆ R

r ir
t
r
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a ia
t
a

t DD λγθ . 

Substitution of 00000 ˆˆˆ iSiiLii zzp βα +=  and 0)0(0)0( ˆˆˆ iS
t
iiL

t
i

t
i zzp βα +=  into (18) yields 
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where ∑∑ ∈∈ 00

000 ˆ/ˆ
Si iLiSi iL

t
i zz αα  is a price index of land and ∑∑ ∈∈ 00

000)0( ˆ/ˆ
Si iSiSi iS

t
i zz ββ  

is a price index of structures. Equation (19) decomposes the overall house price index 

into structures and land components; the weights ∑∑ ∈∈
+= 00 ]ˆˆ[/ˆˆ 0000000

Si iSiiLiSi iLiL zzzs βαα  

and ∑∑ ∈∈
+= 00 ]ˆˆ[/ˆˆ 0000000

Si iSiiLiSi iSiS zzzs βαβ  are estimated shares of land and structures 

in the total value of property sales in period 0. The double imputation method ensures 

that the weights sum to unity. 

The price indexes of land and structures in (19) are Laspeyres-type indexes and 

can be written as weighted averages of price relatives for the individual properties. For 

example, the Laspeyres price index of land can be written as )ˆ/ˆ(ˆ 00
0 iL

t
iLSi iLs αα∑ ∈

, where 

the weights ∑∈
= 0

00000 ˆ/ˆˆ
Si iLiiLiiL zzs αα  for the price relatives 0ˆ/ˆ iL

t
iL αα  reflect the shares of 

the properties in the estimated value of land (implicitly) sold in period 0. Properties with 

relatively large value shares, like properties in wealthy and sought-after neighborhoods 

with large plot sizes and high land prices, therefore have a big influence on the index. 

                                                      
8 Hill and Melser (2008) discuss different types of hedonic imputation indexes in the context of housing. 

For a general discussion of the difference between hedonic imputation indexes and time dummy indexes, 

see Diewert et al. (2009) and de Haan (2010). 
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An alternative to the Laspeyres price index given by (19) is the hedonic double 

imputation Paasche price index, defined on the sample tS  of properties sold in period t 

),...,1( Tt = : 

∑

∑

∈

∈=
t

t

Si

t
i

Si

t
i

t
Paasche p

p

P
)(0

0

ˆ

ˆ

.              (20) 

The imputed constant-quality prices )(0ˆ t
ip  are estimates of the prices that would prevail 

in period 0 if the property characteristics were those of period t, which are estimated as 
t
iS

t
i

t
iLi

t
i zzp )(00)(0 ˆˆˆ βα += , where ∑∑
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constant-quality price of structures. By substituting the constant-quality prices and the 

predicted prices t
iS

t
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t
iL

t
i

t
i zzp βα ˆˆˆ +=  into equation (20), the imputation Paasche index can 

be written as 
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where ∑∑ ∈∈ tt Si

t
iLiSi

t
iL

t
i zz 0ˆ/ˆ αα  and ∑∑ ∈∈ tt Si

t
iS

t
iSi

t
iS

t
i zz )(0ˆ/ˆ ββ  are Paasche price indexes 

of land and structures, which are weighted by ∑∑ ∈∈
+= tt Si

t
iS

t
i

t
iLiSi

t
iLi

t
L zzzs ]ˆˆ[/ˆˆ )(000)0( βαα  

and ∑∑ ∈∈
+= tt Si

t
iS

t
i

t
iLiSi

t
iSi

t
S zzzs ]ˆˆ[/ˆˆ )(000)0( βαβ . The weights are now of a hybrid nature 

and reflect the shares of land and structures in the estimated total value of property sales 

in period t, evaluated at base period prices. 

A drawback of the above indexes is that they are based on the sample of either 

the base period or the comparison period t, but not on both samples. When constructing 

an index going from 0 to t, the sales in both periods should ideally be taken into account 

in a symmetric fashion. The double imputation Fisher price index 

[ ]2

1
000 t

Paasche
t

Laspeyres
t

Fisher PPP ×=              (22) 

does so by taking the geometric mean of the Laspeyres and Paasche price indexes. In 

the empirical section of the paper, we will estimate all three types of indexes. An exact 

decomposition of the Fisher index into structures and land components is not possible. 

Due to the fixed weights, the Laspeyres index and its decomposition are relatively easy 

to explain. So, even though we prefer the Fisher index, we are inclined to implement the 

Laspeyres index in statistical practice when the numerical differences are small. 
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5. Empirical evidence 

5.1 The data set 

The data set we will use was provided by the Dutch association of real estate agents. It 

contains residential property sales for a small city (population is around 60,000) in the 

northeastern part of the Netherlands, the city of “A”, and covers the first quarter of 1998 

to the second quarter of 2008. Statistics Netherlands has geocoded the data. We decided 

to exclude sales on condominiums and apartments since the treatment of land deserves 

special attention in this case. The resulting total number of sales in our data set during 

the ten-year period is 6,397, representing approximately 75% of all residential property 

transactions in “A”. 

The data set contains information on the time of sale, transaction price, a range 

of characteristics for the structure, and characteristics for land. We included only three 

structural characteristics in our models, i.e., usable floor space, building period and type 

of house. For land, we used plot size and postcode or latitude/longitude. After removing 

44 observations with missing values, transaction prices below €10,000, more than 10 

rooms, or ratios of plot size to structure size (usable floor space) larger than 10, we were 

left with 6,353 observations during the sample period. 

Table A1 in the Appendix reports summary statistics by year for the numerical 

variables. The average transaction price significantly increased from 1998 to 2007 and 

then slightly decreased during the first half of 2008 (when the financial crisis started). 

The urban area of the city of “A” seems to have expanded along the east-west axis; the 

standard deviation of the x coordinate in later years is generally much larger than that in 

earlier years. 

5.2 Estimation results for hedonic models 

Given the small size of the city of “A” and the relatively low number of observations, 

we decided to use annual data; in future work we will probably be using bi-annual data. 

Three normalized hedonic equations were estimated: model (8), which has no location 

characteristics at all (denoted as OLS in the tables and figures below), model (10) with 

8 postcode dummy variables (OLSD), and model (12) with property-specific land prices 
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(MGWR). The last model was estimated by mixed geographically weighted regression 

using the software package GWR4.0.9 

Considering that the property transactions are not evenly distributed across space, 

we used the adaptive bi-square function to construct the weighting scheme. In this case, 

the bandwidth is generally referred to as the window size, and its selection procedure is 

equivalent to the choice of the number of nearest neighbors. We derived the optimal 

bandwidth using the ‘Golden Section Search’ approach based on minimizing CV scores 

in a window-size range of 10% to 90%. There is a unique optimal window size for each 

annual sample in terms of prediction power; the CV scores indicated that it was around 

10% for most of the years, except for 1998 (51%), 2001 (36%), and 2003 (29%). Yet, 

for the construction of price indexes, we would prefer a fixed window size for all years, 

especially since the number of sales is almost evenly spread across the whole period. So 

we have chosen a window size of 10% for every year, leading to 60 nearest neighbors 

that were used in the estimation of the MGWR models. 

To compare the performance of the three property price models, two statistics 

were calculated, the Corrected Akaike Information Criterion (AICc) and the Root Mean 

Square Error (RMSE). The AICc takes into account the trade-off between goodness-of-

fit and degrees of freedom and is defined for MGWR models by10 







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where σ̂  is the estimated standard deviation of the error term and )(Str  the trace of the 

hat matrix described in section 3.2. The RMSE measures the variability of the absolute 

prediction errors of the models and is given by 

∑ −=
i

ii yy
n

RMSE 2)ˆ(
1

. 

The AICc and RMSE for each type of model are shown in Table 1. According to 

a rule of thumb mentioned by Fotheringham et al. (2002), if the difference in the AICc 

for two models is larger than 3, a significant difference exists in terms of performance. 

It can be seen that the OLSD model performs much better than the OLS model in all of 

the periods, which is not so surprising, and in turn that the MGWR model outperforms 

                                                      
9 The software can be downloaded free of charge from https://geodacenter.asu.edu. 

10 The AICc expressions for the OLS and OLSD models may be found in e.g. Hurvich and Tsai (1989). 
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the OLSD model. The same ranking is found if the RMSE is used to assess the models. 

These results suggest that land prices indeed vary across space and that MGWR does a 

good job in estimating such nonstationarity. 

 
Table 1: Model estimation and comparison 

 OLS  OLSD  MGWR 

 AICc RMSE  AICc dAIC10 RMSE dRMSE10  AICc dAIC21 RMSE dRMSE21 

1998 6666.26 101.77  6629.82 -36.44 96.96 -4.81  6599.71 -30.11 91.18 -5.78 

1999 7145.61 155.52  7110.61 -35.00 148.37 -7.15  7054.04 -56.57 136.98 -11.39 

2000 7380.38 166.91  7342.49 -37.89 158.99 -7.92  7260.25 -82.24 143.44 -15.55 

2001 7499.41 154.14  7450.69 -48.72 145.64 -8.50  7414.58 -36.11 137.21 -8.43 

2002 7781.70 157.26  7714.56 -67.14 146.61 -10.65  7703.18 -11.38 141.05 -5.56 

2003 7927.15 173.70  7877.13 -50.02 164.30 -9.40  7866.85 -10.28 158.42 -5.88 

2004 7992.75 161.12  7970.64 -22.11 156.08 -5.04  7950.46 -20.18 149.29 -6.79 

2005 8191.19 172.02  8124.69 -66.50 160.87 -11.15  8071.11 -53.58 149.51 -11.36 

2006 8736.88 191.27  8717.40 -19.48 186.03 -5.24  8688.51 -28.89 176.35 -9.68 

2007 9094.15 183.55  9068.06 -26.09 177.89 -5.66  9037.90 -30.16 168.44 -9.45 

Note: dAIC10 indicates the difference of AICc between OLS and OLSD, while dAIC21 indicates the 
difference of AICc between OLSD model and MGWR; dRMSE10 and dRMSE21 have similar meanings. 

 

 
Table 2: Summary statistics for estimated land prices from the MGWR model 

 Min Max Median Mean Std deviation 

1998 0.44 97.18 49.21 44.97 21.74 

1999 76.13 195.23 146.48 141.70 30.23 

2000 81.62 260.38 196.86 187.82 39.88 

2001 89.05 227.31 182.73 173.00 34.00 

2002 158.41 305.99 242.15 234.85 33.52 

2003 55.03 196.84 142.73 133.84 37.21 

2004 79.74 236.14 174.35 171.70 35.43 

2005 109.47 276.13 187.90 181.74 36.08 

2006 55.37 208.72 142.75 131.99 33.61 

2007 58.54 223.41 166.35 164.82 31.86 
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Table 2 contains summary statistics for the price per square meter of land for the 

transacted properties, estimated using MGWR. The average estimated land price is quite 

volatile; the change over time differs greatly from that of the average transaction price 

of the properties (see Table A.1 in the Appendix). Following a sharp increase in 1999, 

the estimated average land price peaked in 2002, experienced a dramatic drop in 2003, 

and then increased again. The value in the starting year 1998 of approximately 45 euros 

per square meter of land is extremely low. This has a big impact on the corresponding 

land price indexes, as we will see in section 5.3. 

As an illustration of the estimated hedonic models, the 2007 parameter estimates 

for the structure characteristics are given in Table 3. Note that almost all estimates differ 

significantly from zero at the 1% level. Dummy variables for dwellings built after 2000 

and for detached houses were not included, and so the intercept term measures the price 

of structures per square meter of living space (in euros) for detached houses built after 

2000. The estimated intercept for MGWR is rather high in comparison with OLSD. For 

each model, there is a clear tendency for structures to become less expensive as they are 

getting older. Also, detached dwellings are more expensive than other types of houses, 

which accords with a priori expectations. 

 

 
Table 3: Parameter estimates for structural characteristics, 2007 

OLS OLSD MGWR 
Intercept 1561.00** 

(46.93) 
1472.04** 

(55.59) 
1633.70** 

(75.35) 
Building period:1960-1970 -367.23** 

(26.85) 
-310.09** 

(36.97) 
-411.55** 

(45.21) 
Building period:1971-1980 -308.01** 

(24.19) 
-255.16** 

(35.68) 
-378.17** 

(44.86) 
Building period:1981-1990 -230.45** 

(24.21) 
-178.98** 

(34.25) 
-259.74** 

(45.46) 
Building period:1991-2000 -54.42* 

(22.41) 
-58.87* 
(27.87) 

-124.04** 
(38.28) 

Terrace -326.68** 
(35.80) 

-286.66** 
(36.78) 

-309.05** 
(42.04) 

Corner -303.89** 
(32.67) 

-280.98** 
(32.67) 

-278.44** 
(35.04) 

Semidetached -156.63** 
(49.37) 

-165.54** 
(49.85) 

-195.84** 
(52.39) 

Duplex -171.43** 
(31.49) 

-149.10** 
(31.63) 

-170.19** 
(33.94) 

Note: Standard errors in brackets;** and * denote significance at the 1% and 5% level, respectively. 
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5.3 A comparison of different hedonic price indexes 

Changes in average property prices and their land and structure components are affected 

by compositional change and quality change of the traded properties. The hedonic house 

price indexes and the land and structures components that we estimated control for these 

effects, and it will be interesting to see how they are affected by the choice of hedonic 

model (OLS, OLSD, or MGWR). We have estimated chained rather than direct indexes 

because imputing the ‘missing prices’ over a long period of time may not be useful and 

because the land and structures will be updated annually. A disadvantage of chaining is 

that the resulting indexes cannot be exactly decomposed since they are not consistent in 

aggregation. 

In Figures 1-3, the estimated double imputation hedonic Laspeyres, Paasche and 

Fisher price indexes for the property as a whole are plotted, based on the three models. 

For each model, the (chained) Laspeyres index sits above the Paasche, as expected. The 

indexes based on OLSD and MGWR are almost the same; the differences can hardly be 

noticed in the graphs. So, for the house price index, the inclusion of a limited number of 

location dummy variables produces satisfactory results, despite the fact that the OLSD 

model performs not as good as MGWR. Not using location information at all makes a 

difference though: the Laspeyres and Paasche indexes from the OLS model seem to be 

biased downwards and upwards, respectively. The biases almost cancel out in the Fisher 

index, which is very similar to the Fisher indexes produced with the other two models. 

 
Figure 1: Chained hedonic imputation Laspeyres house price index 
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Figure 2: Chained hedonic imputation Paasche house price index 

 
 
Figure 3: Chained hedonic imputation Fisher house price index 
and official SPAR index 

 
 

We tentatively conclude that the double imputation Fisher house price index is 

insensitive to the treatment of location in the hedonic model. The official house price 

index for the Netherlands is also plotted in Figure 3.11 Our hedonic indexes show a more 

modest price increase. There may be at least two reasons for this: house prices in the 

                                                      
11 The official index is based on the Sale Price Appraisal Ratio (SPAR) method. For more information on 

this method, see de Haan et al. (2009) and de Vries et al. (2009). 
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city of “A” appreciated less compared to the rest of the country, or our indexes better 

adjust for quality changes. We think that the second reason is more important. 

The picture changes when we look at the Fisher indexes for the price of land in 

Figure 4. The OLS- and OLSD-based indexes are similar, but the MWGR-based index 

behaves differently. For example, between 1998 and 1999 the MWGR-based index rises 

much faster than the other two indexes, and between 2005 and 2006 the MWGR-based 

index rises whereas the other two indexes fall. These results are surprising; for land in 

particular, we would expect the OLSD-based index to be similar to the MWGR-based 

index since both indexes explicitly account for location. 

 

Figure 4: Chained hedonic imputation Fisher price indexes for land 

 
 

Figure 5 shows the hedonic imputation Fisher price indexes for structures based 

on the three models. While the differences cannot be ignored, they are less pronounced 

than the differences obtained for land. This is in accordance with a priori expectations: 

location should affect the price of land, and is modeled as such, but should leave the 

price of structures unaffected.  

Figures 4 and 5 raise a number of issues. The first issue is whether the trends of 

the (Fisher) indexes for land and structures are plausible. For land, this will be difficult 

to check because information on the price change of land is currently unavailable for the 

Netherlands. For structures we use the nationwide official construction cost index (CCI) 

for dwellings, published by Statistics Netherlands, as a benchmark. This index, rebased 
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to 1998=100, is also plotted in Figure 5. During the first half of the sample period, our 

price indexes for structures exhibit roughly the same trend as the construction cost index. 

During the second half of the sample period, the construction cost index flattens, but the 

structures price indexes keep rising. A construction cost index does not necessarily have 

to be identical to an implicitly derived price index for structures, and it may suffer from 

some measurement problems,12 but this divergence is nevertheless puzzling. 

 
Figure 5: Chained hedonic imputation Fisher price indexes for 
structures and official construction cost index 

 
 

Importantly, the overall property price indexes are affected most by the changes 

in structures prices; the average estimated value share for structures across the sample 

period is 0.73 for the OLS and OLSD models, and 0.74 for MWGR. Figure 6 shows the 

OLSD-based estimates of the value shares for land and structures. The volatility of the 

shares in Figure 6, and also the volatility of the price indexes for land and structures in 

Figures 4 and 5, is striking. We would not expect the ‘true’ shares and price indexes to 

be very volatile. The volatility can be caused by problems such as the small number of 

observations, multicollinearity, heteroskedasticity, or outliers in the data. Of course, the 

small-number problem can only be circumvented by using data for a bigger city, which 

could also enable us to estimate bi-annual instead of annual indexes. 

                                                      
12 The flattening of the construction cost index prior between 2003 and 2007 has been subject of debate in 

the Netherlands. The discussion arose because the construction cost index increased by only 4.9%, which 

was even lower than the increase in the CPI of 5.8%, while house prices were still rapidly rising. 
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Figure 6: Estimates of value shares of land and structures, 
OLSD-based  

 
 
Figure 7: Chained Fisher price indexes for land and structures, 
OLSD-based  

 
 

Multicollinearity was a big problem faced by Diewert et al. (2015) in estimating 

the builder’s model. It resulted in price changes for land and structures that consistently 

had opposite signs. In Figure 7, the OLSD-based Fisher indexes for land and structures 

from Figures 4 and 5 are copied. In some years, like in 2002, the price changes for land 

and structures have opposite signs, but in other years the price changes are in the same 

direction. We therefore suspect that multicollinearity is not the main issue involved. The 
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variance inflation factor (VIF) for the estimated parameters for the ratio of plot size and 

structure size did not point to significant multicollinearity either. 

The use of the property price per square meter of living space as the dependent 

variable in the models (i.e. the normalization) likely reduced multicollinearity, but it can 

have led to instability of the parameter estimates for land and structures if it resulted in 

‘classical’ heteroskedasticity where the regression residuals grow with increasing ratios 

of plot size to structure size. For the OLS and OLSD models, the Breusch-Pagan test did 

indeed point to heteroskedasticity.13 A related problem is the relatively small variation 

in the plot size to structure size ratios. 

Scatterplots of the normalized prices against the plot size to structure size ratios 

showed some extreme outliers; most of them are in the higher ranges of the normalized 

prices and ratios. To check if deleting outliers would stabilize the indexes, we removed 

all observations with ratios of plot size to structure size larger than 5 (instead of 10), re-

ran OLSD regressions and calculated chained double imputation price indexes again. 

The new OLSD-based Fisher indexes for land and structures are depicted by the dashed 

lines in Figure 7. Compared with the initial indexes the volatility is slightly reduced, but 

the trends have changed dramatically: the new structure price index sits above the old 

index and the new land price index sits far below the old one. This troubling result is 

touched upon in section 6 below. 

6. Discussion and conclusions 

Land is typically not explicitly included in hedonic models for house prices, which can 

bias the results. Ignoring spatial nonstationarity of land prices can also generate bias. As 

far as we know, the present paper is the first attempt to account for nonstationarity of 

land prices in the construction of hedonic imputation house price indexes using spatial 

econometrics. We linearized the ‘builder’s model’ proposed by Diewert, de Haan and 

Hendriks (2015), allowed the price of land to vary at the individual property level, and 

estimated the model for the normalized property price (i.e., the price of the property per 

square meter of living space) by MGWR, a semi-parametric method, on annual data for 

                                                      
13 Actually, we should have used a heteroskedasticity-consistent estimator for the standard errors in the 

OLS and OLSD models. Note that there is no formal heteroskedasticity test for the MWGR model. 
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the Dutch city of “A”. We then constructed chained imputation Laspeyres, Paasche and 

Fisher indexes and compared them with price indexes based on more restrictive models: 

a model with no variation in land prices and a model where land prices can vary across 

postcode areas, both estimated by OLS. 

The Fisher house price indexes were quite insensitive to the choice of model, but 

the Laspeyres and Paasche indexes for the ‘fixed’ land price model differed from those 

for the models where location was explicitly included. The use of postcode area dummy 

variables produced price indexes very similar to indexes obtained by MGWR. Hill and 

Scholz (2014) also concluded that the use of geocoded data and spatial econometrics did 

not improve hedonic imputation house price indexes over models with postcode dummy 

variables.14 This result is reassuring for statistical agencies that do not have the expertise 

or resources to use more sophisticated methods. 

For some purposes, separate price indexes for land and structures are needed. As 

was demonstrated by Diewert, de Haan and Hendriks (2015), this can be a difficult task. 

A potential problem is multicollinearity, which arises because (in the ‘builder’s model’) 

the value of the property is split into the value of land and the value of structures: if the 

estimated price of land is too high, then the estimated price of structures will be too low, 

given plot and structure size. Probably due to the normalization of the property price, 

our estimates did not appear to suffer from severe multicollinearity. 

Yet, our estimated price indexes for land and structures were very volatile. We 

can think of at least two reasons. First, the normalization of the property price resulted 

in heteroskedastic errors (and relatively little variation in the plot size to structure size 

ratios), leading to unstable coefficients and volatile indexes. Thus, although we reduced 

multicollinearity, at the same time we introduced heteroskedasticity. 

The second reason for the volatility of the estimated land and structures indexes 

might be the linear relation postulated in our models between normalized property price 

and plot size to structure size ratio. Most likely, the ‘true’ relationship is nonlinear, and 

the linear specification produced outliers in the higher ranges. The misspecification was 

confirmed when we deleted all observations with plot size to structures size ratios larger 

than 5; the volatility of the land and structure price indexes from the OLSD model (with 

postcode dummy variables) was reduced somewhat but the trends changed significantly. 

                                                      
14 Hill and Scholz (2014) treated location as a separate characteristic in their hedonic models in that they 

estimated property-specific shift terms for the overall property price rather than the price of land. 
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The probable cause is that the price of land is dependent on the size of the land plot: the 

price per square meter of land tends to fall with increasing plot size. Diewert, de Haan 

and Hendriks (2015) adjusted for this type of nonlinearity using linear splines to model 

the price of land. In future work we want to modify our models in the same spirit, either 

by using splines as well or by explicitly specifying some nonlinear function. 

What worries us most is the extreme volatility of the MWGR-based indexes for 

land and structures. The MWGR method makes use of prices of neighboring properties, 

and since neighboring properties may be expected to have similar plot sizes, our results 

are unexpected and counterintuitive. We lack an explanation of this finding, but it does 

suggest that the semi-parametric MGWR approach produces inherently unstable results. 

Thus, while the MWGR model outperforms the other two models in terms of statistical 

criteria (AICc and RMSE) and produces a house price index that is very similar to the 

OLSD model, it aggravates instability and does not seem appropriate for estimating the 

land and structures components. 
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Appendix 
 

Table A 1: Summary statistics by year 

 Total 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
Obs. 6353 550 551 563 579 599 601 613 622 653 684 338 

Transaction price (Euro) 
Mean 159654.54 96461.46 118282.01 132876.58 145231.68 151706.44 163434.80 175121.07 182076.49 191212.41 199038.99 196620.71 
S.D. 74337.38 42692.67 54082.15 56393.94 58437.87 53463.20 64048.12 82963.12 70840.62 76253.88 83984.94 82259.77 

Unit price (Euro/m2) 
Mean 1249.28 748.42 934.22 1044.42 1172.44 1244.20 1286.49 1355.08 1423.38 1467.40 1520.72 1510.61 
S.D. 380.79 217.29 282.93 288.05 298.26 291.71 288.65 297.94 298.21 324.48 350.24 341.84 

Parcel size (m2) 
Mean 255.99 243.78 262.41 249.28 244.72 239.37 255.78 262.63 255.93 264.42 275.15 258.76 
S.D. 163.27 175.75 175.04 162.38 137.39 115.26 164.37 165.98 164.14 150.79 198.42 168.94 

Floor space (m2) 
Mean 126.15 126.43 125.36 126.72 123.41 122.01 125.83 126.56 126.29 128.57 128.49 128.14 
S.D. 30.91 24.08 31.94 32.31 29.71 28.12 30.67 36.87 30.75 31.12 30.10 32.69 

Ratio of parcel to floor space 
Mean 1.99 1.86 2.07 1.93 1.97 1.97 1.99 2.02 1.97 2.01 2.06 1.97 
S.D. 0.90 0.95 1.08 0.86 0.87 0.80 0.90 0.85 0.84 0.79 1.03 0.92 

XCoordinate             
Mean 233714.07 233973.13 234204.27 234185.17 233930.83 234003.15 233633.95 233484.33 233535.37 233224.28 233385.63 233324.00 
S.D. 1810.91 1458.76 1426.00 1549.06 1728.41 1712.31 1794.27 1985.32 1930.81 1916.71 1946.71 2011.40 

YCoordinate             
Mean 558584.51 558727.16 558799.54 558822.96 558648.40 558716.46 558521.05 558394.83 558548.00 558430.55 558404.22 558447.70 
S.D. 1406.93 1441.34 1464.41 1430.78 1426.64 1411.69 1450.61 1414.46 1352.07 1322.21 1381.35 1240.58 

 


