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Current models of signal evolution explain diversity by invoking a variety of social, perceptual and environmental
factors. Social systems and spacing patterns determine the active space of signals and their function. Receiver
sensory systems and habitat characteristics interact to constrain signal design. These factors are traditionally
implicated in promoting directional evolutionary change, leading to increases or decreases in signal complexity. We
examine macro-evolutionary trends in signal design, as reflected by display modifier repertoire size, for 124 species
of iguanian lizards to identify the importance of ecological factors in display evolution. Possessing a small home
range, being arboreal and feeding on moving prey are all correlated with the evolution of large repertoires. However,
living in closed habitats is associated with increased evolutionary change in repertoire size, producing greater signal
diversity. Ecological factors can thus act either directionally or to promote evolutionary lability. © 2002 The Lin-
nean Society of London, 
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INTRODUCTION

 

A major challenge faced by any attempt to formulate a
general theory of signal evolution is the sheer diversity
of structure (Dawkins, 1993). It is widely recognized
that this variation reflects the action of a range of selec-
tive pressures and constraints, so the essential first
step is to compile a comprehensive list of evolutionary
forces. Current theoretical models incorporate a variety
of social (Andersson, 1994; Blumstein & Armitage,
1997; Ord, Blumstein & Evans, 2001), perceptual
(Endler, 1987, 1992; Fleishman, 1988a,b; Ryan &
Rand, 1993) and environmental factors (Morton,
1975; Hansen, 1979; Wiley & Richards, 1982; Ryan &
Brenowitz, 1985; Endler, 1987, 1992; Fleishman,
1988b; Ryan, Cocroft & Wilczynski, 1990; Marchetti,

1993). Social systems and spacing patterns influence
the distance over which a signal must function.
Receiver sensory systems constrain the structure of sig-
nals to those that are perceivable (Endler, 1992; Ryan
& Rand, 1993), while habitat structure determines
signal degradation (Morton, 1975; Marten & Marler,
1977; Marten, Quine & Marler, 1977; Wiley & Richards,
1978, 1982; Hansen, 1979; Daniel & Blumstein, 1998).

Lizards of the agamid and iguanid families typically
possess a complex display repertoire, which is used in
both male–male contests over territories (Carpenter,
1978; Trivers, 1976) and male–female courtship inter-
actions (Jenssen, 1970a). These visual signals are
composed of discrete, and sequentially predictable,
movements centred on a head-nod and/or push-up
display. Signal complexity varies across species and
can be quantified by the number of modifiers used
(Jenssen, 1977, 1978; Ord 

 

et al

 

., 2001). Modifiers may
be either static (e.g. dewlap extensions, crest rais-
ing, body compression/inflation, back arching, body
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raising/tilting and changes in body colouration) or
dynamic (e.g. tail-wagging and arm-waving). In a pre-
vious study (Ord 

 

et al

 

., 2001), we reported that differ-
ences in modifier repertoire size between species are
partially explained by differences in male–male com-
petitive intensity and suggested that more complex
signals have evolved to improve opponent assessment.
In the present study, we report a complementary anal-
ysis of the way in which ecological factors have influ-
enced this aspect of signal evolution.

There are at least two possible consequences of
natural selection: directional responses generate in-
creases or decreases in the mean value of a trait,
while disruptive or diversifying responses promote
greater variance. As part of an investigation into the
evolution of visual signals in lizards, we examine the
pattern of selective response to four ecological factors
that are likely to have influenced signal structure:
habitat structure, home range size, arboreality and
diet.

 

H

 

ABITAT

 

 

 

STRUCTURE

 

Signals transmitted for any distance inevitably
degrade before they reach potential receivers
(Dusenbery, 1992; Bradbury & Vehrencamp, 1998).
Transmission efficiency is determined by an interac-
tion between signal properties and the physical struc-
ture of the environment. Signals designed for long
range communication should thus be subjected to
minimal or predictable degradation (e.g. ranging in
birds: McGregor & Krebs, 1984; Morton, 1986; Naguib
& Wiley, 2001; and primates: Whitehead, 1987). Stud-
ies of acoustic communication have shown that trans-
mission range in bird song is maximized by tailoring
calls to the acoustic environment in which they are
typically given (Morton, 1975; Marten & Marler, 1977;
Marten 

 

et al

 

., 1977; Wiley & Richards, 1982). Simi-
larly, the poor visibility characteristics of some habi-
tats has selected for the evolution of conspicuous
visual signals (Endler, 1987, 1992; Fleishman, 1992;
Marchetti, 1993; Losos & Chu, 1998). The evolution of
communication systems in response to properties of
the signalling environment can hence generate and
maintain differences in signal design when animals
occur in different habitat types.

Habitat choice might influence the complexity of
visual signals in at least two ways. In denser habitats,
light levels are lower and obstructions potentially
reduce signal active space (i.e. the distance over which
signals are likely to remain effective). This latter fac-
tor will limit the maximum distance over which visual
signals can be exchanged. However, as the distance
between a signaller and receiver diminishes, the con-
straint of degradation is relaxed and more complex
signals can emerge (Endler, 1992). Lizards in closed

habitats may only become aware of conspecifics at
close range (Stamps, 1983), and display interactions
may consequently be restricted to those conducted
over short distances (Jenssen, 1978). This is one mech-
anism by which closed habitats might enable selection
for complex repertoires.

In addition, reductions in ambient light level should
interact with properties of the lizard visual system to
dictate the maximum rate of display movements.
Experimental studies of electroretinographic response
in three species of anoles demonstrate that critical
flicker fusion frequency, which influences the ability to
detect fast-moving objects, declines as the intensity of
ambient light falling on a visual stimulus is reduced
(Fleishman, Marshall & Hertz, 1995). It follows that
the same rapid movements that effectively stimulate
the visual system of an opponent in bright sunlight
would be ineffective in shade. This sensory constraint
should select for slower display movements in closed
habi-tats (Fleishman 

 

et al

 

., 1995). If signal structure
is unchanged, then the maximum rate of information
transmission will be reduced and aggressive interac-
tions involving opponent assessment will become more
costly because of the extra time required. Alterna-
tively, animals could add display modifiers to compen-
sate for the constraint on movement rate and enhance
information transfer. This latter scenario also predicts
that complex signals will evolve with closed habitat
preference.

 

H

 

OME

 

 

 

RANGE

 

 

 

SIZE

 

Species patrolling smaller home ranges will engage in
bouts of territorial defence over shorter distances. In
lizards, the intensity and vigour of signal exchanges
typically escalates as conspecific distances decrease
(Hover & Jenssen, 1976; Scott, 1984; Losos, 1985a;
Decourcy & Jenssen, 1994). If opponents are evenly
matched in size and condition, signal exchanges may
degrade into physical combat (Stamps & Krishnan,
1994), which may also be facilitated by the proximity
of participants (Scott, 1984). The increased injury risk
under such conditions potentially favours large dis-
play repertoires for more efficient and accurate oppo-
nent assessment (Jenssen, 1978; Ord 

 

et al

 

., 2001). We
therefore test whether species possessing small home
ranges are also more likely to evolve complex signals.

 

A

 

RBOREALITY

 

Martins (1993b) examined the evolution of push-up
displays in a subset of lizards and found that ‘jerky’
displays tended to be lost in arboreal species, perhaps
because of the physical difficulty of performing signal
movements in such environments. However, arboreal
habitats could facilitate the evolution of complex sig-
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nals or elaborate display repertoires as a secondary
consequence of the enhanced locomotor flexibility
that they require (Moermond, 1979). For example,
Losos (1990a) suggested that display rate may
coevolve with rapid movements such as running and
jumping. Similarly, the ability to negotiate complex
habitats is related to visual acuity (Jenssen &
Swenson, 1974). Since animal signals are designed to
exploit the sensory properties of receivers (Guilford &
Dawkins, 1991, 1993; Bradbury & Vehrencamp, 1998),
species living in complex habitats may be pre-adapted
to evolve complex signals. Thus, we assess the rela-
tionship between arboreal locomotion and signal
structure.

 

D

 

IET

 

Most lizards are insectivores, but one subfamily of
iguanids is predominantly herbivorous (the iguani-
nae). Males in this group are typically less aggressive
than insectivores (Stamps, 1983). This relationship
implies that species feeding on moving prey might
have evolved more complex visual signals to mediate
aggressive interactions. We therefore investigate
whether a diet of typically fast-moving and/or small
prey is associated with the evolution of complex
signals.

 

MATERIAL AND METHODS

 

Published data on modifier repertoire size, habitat
preference, home range size, arboreality and diet were
compiled from a total of 141 sources for a variety of
agamid and iguanid lizard species (see Appendix).

We began by collating together any papers describ-
ing display behaviour (total of 215 sources). Studies
that did not report display structure in sufficient
detail were then excluded. Species ecology was well
documented in many of the remaining studies, but
additional sources focusing primarily on ecological fac-
tors were used to supplement this material when nec-
essary. The final set of sources was used to construct a
data set covering 124 species.

 

D

 

ATA

 

 

 

CATEGORIZATION

 

One inherent problem in comparing communicative
systems across a diverse range of species is obtaining
an appropriate and reliable index of signal variation
that can be standardized. Visual displays in agamid
and iguanid lizards almost invariably include the ste-
reotyped head and body movements commonly termed
‘head-nod’ or ‘push-up’ displays. Subtle variation does
exist within these displays (e.g. differences in display
rate, speed, amplitude, etc.) and there are several spe-
cies for which this variation has been quantified (e.g.

Martins, 1993b; Martins & Lamont, 1998). However,
we found that this information could not be incorpo-
rated into our display complexity index because of
methodological differences among published accounts.
In addition, these core displays (head-nod and/or
push-up) may vary within a species. For example,
some anoline lizards are reported to have up to five
different core display types, each varying in structure
and social context (Hover & Jenssen, 1976; Jenssen &
Rothblum, 1977). It was hence impractical to obtain a
single value for each species based upon core display
characteristics.

We focused instead on ‘display modifiers’, which are
postures or movements that accompany and elaborate
core displays (Jenssen, 1977). Modifier use varies
across species and accounts for a considerable propor-
tion of signal diversity. In addition, information on
modifier repertoire size could be readily collated from
the literature, using standard criteria. This allowed us
to include a large, and taxonomically diverse, range of
species in our analyses.

Modifiers scored included: back arching, arm
waving, body compression/inflation, body raising,
body tilting, eye ‘orbing’, changes in body colouration,
lip smacking, crest raising, tail displays, throat dis-
plays (dewlap extensions, gorging of the throat, etc.),
and tongue protrusions. To be conservative, and to
acknowledge the presence/absence of core displays,
four species (see Appendix) that were reported not to
possess a core display were scored as having a reper-
toire size of 0, irrespective of the presence of any mod-
ifiers (two species were observed to possess a throat
display, while others had a tail display).

Some modifiers are unique to species or species
groups. However, our aim was to quantify repertoire
size to obtain an index of signal complexity across spe-
cies. For this reason, we did not compare individual
modifiers to assess more subtle differences or similar-
ities in structure with those of other species.

In iguanian lizards, visual displays are typically
performed by males. This tendency is reflected in the
published literature, with many studies focusing pri-
marily on male signal behaviour. While there are some
descriptions of display structure for females and juve-
niles, repertoire size is invariably either equal to, or
smaller than, that reported for males. In addition,
although the presence of specific modifiers may be
influenced by social context in some species, many are
employed across all types of display interaction. Our
goal was to obtain an estimate of maximum repertoire
size for each species. We therefore used the number of
modifiers accompanying male core displays.

We acknowledge the possibility that, in some cases,
the original sources from which we obtained repertoire
size information may have underestimated the num-
ber of modifiers used. This might result when only



 

130

 

T. J. ORD 

 

ET AL

 

.

 

© 2002 The Linnean Society of London, 

 

Biological Journal of the Linnean Society, 

 

2002, 

 

77

 

, 127–148

 

part of the display repertoire was observed and/or if
the focus of the investigator(s) was on other aspects
of behaviour. Such errors would have the affect of
increasing apparent variation in repertoire size, but
there is no reason to expect them to be systematically
associated with the other factors of interest. The effect
would hence be to reduce the likelihood of detecting
significant relationships (see Benton, 1999; Nunn &
Barton, 2001).

Habitat preference was classified as ‘closed’ or
‘other’. ‘Closed’ habitats consisted of environments
with large amounts of ground and/or canopy cover and
were commonly referred to in the literature as rain-
forest, forest or closed woodland. ‘Other’ habitats were
typically described as desert, plains, steppe, savan-
nah, prairies, shrubland or open woodland. To be con-
servative, four species that were reported to occur in
various habitats were scored as ‘other’ (see Appendix).
Most data on display structure describe signals pro-
duced by males, so data on male home range size was
favoured. However, in species that were reported to
have no significant difference between the sexes, or
when male data were not available, species values
were used. When reported, maximum home range size
was favoured, otherwise average values were used. All
home range values were converted to m

 

2

 

. Locomotion
was categorized as either ‘arboreal’ or ‘semi-arboreal/
terrestrial’ following author interpretations. Diet was
categorized as ‘moving prey’ if a species was exclu-
sively insectivorous or carnivorous. Omnivorous spe-
cies were those with a diet that included vegetation,
but that consisted predominately of moving prey.
Species were considered to have a diet of ‘non-moving
prey’ when they were reported to be exclusively
herbivorous.

 

P

 

HYLOGENY

 

No complete phylogeny of all the species of interest
was available, so we compiled a composite tree from
several sources. In some cases, several phylogenetic
hypotheses were available. Phylogenies were ‘ranked’
with those based on combined data favoured over
purely molecular data, which was, in turn, favoured
over purely morphological data. If hypotheses were
still equally ranked, we preferred trees based on
parsimony methods of tree construction, then those
with the fewest number of polytomies (where the
precise phylogenetic relationship between species is

unknown), and finally those more recent in publica-
tion. Species synonyms were checked using the ‘EMBL
Reptile Database’ (http://www.embl-heidelberg.de/

 

∼

 

uetz/livingreptiles.html).
Using these criteria, hypotheses ranked highest

were used to construct tree 1 (Fig. 1a). Agamidae:
genera positions follow Macey 

 

et al

 

. (2000) with

 

Acanthocercus

 

 positioned by Moody (1980). Species
within the genus 

 

Ctenophorus

 

 are based on A. E. Greer
(unpublished data) with 

 

C. fordi

 

 and 

 

C. vadnappa,

 

which were unrepresented by Greer, positioned as
polytomies. Iguanidae: subfamilies were positioned
following the most resolved hypothesis of Schulte

 

et al

 

. (1998). The anoles and 

 

Chamaelinorops

 

 are based
on Jackman 

 

et al

 

. (1999) with additional species
positioned as follows; 

 

Anolis auratus, A. cupreus,
A. nebulosus

 

 (Stamps, Loso & Andrews, 1997); 

 

A. cau-
dalis, A. chlorocyanus, A. conspersus, A. cybotes, A. opa-
linus, A. websteri

 

 (Burnell & Hedges, 1990); 

 

A. cooki,
A. evermanni, A. gundlachi, A. monensis

 

 (Roughgarden
& Pacala, 1989); 

 

A. roquet, A. trinitatis

 

 (Roughgarden
& Pacala, 1989; Yang, Soule & Gorman, 1974);

 

A. carpenteri, A. intermedius, A. sericeus, A. townsendi,
A. tropidolepis

 

 (Echelle, Echelle & Fitch, 1971);

 

A. pentaprion

 

 (Echelle 

 

et al.

 

, 1971; Guyer & Savage,
1992). Crotaphytinae and genera level positions of
Phrynosomatinae are based on Schulte 

 

et al

 

. (1998)
and Reeder & Wiens (1996). Species were positioned
from several sources; 

 

Phrynosoma

 

 (Garland, 1994);

 

Sceloporus

 

 (Wiens & Reeder, 1997) with 

 

S. mucronatus

 

by Mindell, Sites & Graur (1989); 

 

Uma

 

 (Adest, 1977);

 

Urosaurus

 

 (Reeder & Wiens, 1996) with 

 

U. bicarinatus

 

by Mittleman (1942); 

 

Uta

 

 (Upton & Murphy, 1997).
Iguaninae are based on Sites 

 

et al

 

. (1996) and on Wiens
& Hollingsworth (2000) combined morphological and
molecular hypothesis, with additional 

 

Cyclura

 

 and

 

Ctenosaura

 

 species by Martins & Lamont (1998)
and De Queiroz, 1987), respectively. No hypotheses
for 

 

Holbrookia

 

 or 

 

Microlophus

 

 were found; we posi-
tioned species within these genera as polytomies.

Most variation between phylogenetic hypotheses
occurred for the anoles and 

 

Sceloporus

 

 genera. To rec-
ognize this, we generated a second tree (tree 2) using
an alternative hypothesis for each of these two groups
(Fig. 1b). Each hypothesis was deliberately selected to
reflect the more extreme alternatives in topology. The
anoles are based on Hedges & Burnell (1990) with
additional species as follows; 

 

Anolis limifrons

 

 (Hass,
Hedges & Maxson, 1993); 

 

A. acutus, A. evermanni

 

Figure 1.

 

Species and phylogenetic hypotheses used to calculate independent contrasts and to reconstruct ancestor states
for concentrated-changes tests. ‘Polytomies’, where the precise relationship between species is unknown, are left unre-
solved. (a) Topology of tree 1 illustrating the most preferred phylogenetic hypothesis and (b) alternative topologies for the
agamids, anoles and 

 

Sceloporus

 

 used to construct tree 2. See text for methods.

 

�
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101
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104
105
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108
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110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Hydrosaurus pustulatus
Ctenophorus decresii
C. fionni
C. pictus
C. maculosus
C. vadnappa
C. fordi
C. nuchalis
Pogona barbata
Amphibolurus muricatus
Lophognathus temporalis
Phrynocephalus arabicus
P. maculatus
Acanthocercus atricollis
Agama agama
Draco spilopterus

11
3
4
5
6
7
8
9
10
2
1
14
15
16
17
12
13

Chamaelinorops barbouri
Anolis equestris
A. luciae
A. trinitatis
A. aeneus
A. roquet
A. cybotes
A. evermanni
A. acutus
A. cristatellus
A. cooki
A. monensis
A. gundlachi
A. brevirostris
A. distichus
A. caudalis
A. websteri
A. coelestinus
A. chlorocyanus
A. carolinensis
A. marcanoi
A. sagrei
A. conspersus
A. valencienni
A. lineatopus
A. opalinus
A. carpenteri
A. limifrons
A. pentaprion
A. tropidolepis
A. townsendi
A. sericeus
A. intermedius
A. cupreus
A. auratus
A. nebulosus
A. humilis
A. grahami

25
18
19
20
21
22
31
36
37
32
33
34
35
27
28
29
30
23
24
38
26
39
52
53
54
51
40
41
42
43
44
45
46
47
48
49
50
55

Sceloporus merriami
S. graciosus
S. magister
S. occidentalis
S. undulatus
S. torquatus
S. jarrovii
S. mucronatus
S. cyanogenys
S. ornatus
S. dugesii
S. poinsetti

99
100
103
101
102
104
106
105
109
110
107
108

Lophognathus temporalis
Amphibolurus muricatus
Ctenophorus decresii
C. fionni
C. pictus
C. maculosus
C. vadnappa
C. fordi
C. nuchalis
Pogona barbata
Hydrosaurus pustulatus
Draco spilopterus
Lyriocephalus scutatus
Phrynocephalus arabicus
P. maculatus
Acanthocercus atricollis
Agama agama
Anolis equestris
A. luciae
A. trinitatis
A. aeneus
A. roquet
A. coelestinus
A. chlorocyanus
Chamaelinorops barbouri
Anolis marcanoi
A. brevirostris
A. distichus
A. caudalis
A. websteri
A. cybotes
A. cristatellus
A. cooki
A. monensis
A. gundlachi
A. evermanni
A. acutus
A. carolinensis
A. sagrei
A. carpenteri
A. limifrons
A. pentaprion
A. tropidolepis
A. townsendi
A. sericeus
A. intermedius
A. cupreus
A. auratus
A. nebulosus
A. humilis
A. opalinus
A. conspersus
A. valencienni
A. lineatopus
A. grahami
Crotaphytus collaris
Gambelia wislizenii
G. sila
Ctenosaura similis
C. hemilopha
C. quiquecarinata
Amblyrhynchus cristatus
Conolophus subcristatus
C. pallidus
Iguana iguana
Sauromalus obesus
S. ater
Cyclura nubila
C. cychlura
C. rileyi
C. collei
C. ricordi
C. carinata
C. cornuta
Dipsosaurus dorsalis
Brachylophus fasciatus
Uma notata
U. scoparia
U. inornata
U. paraphygas
U. exsul
Holbrookia propinqua
H. maculata
H. lacerata
Callisaurus draconoides
Cophosaurus texanus
Phrynosoma modestum
P. platyrhinos
P. cornutum
P. coronatum
P. solare
P. douglassii
Uta squamata
U. antigua
U. palmeri
U. stansburiana
U. nolascensis
Petrosaurus mearnsi
Sceloporus merriami
S. graciosus
S. occidentalis
S. undulatus
S. magister
S. torquatus
S. mucronatus
S. jarrovii
S. dugesii
S. poinsetti
S. cyanogenys
S. ornatus
Urosaurus ornatus
U. graciosus
U. nigricaudus
U. microscutatus
U. bicarinatus
Chalarodon madagascariensis
Leiocephalus carinatus
Microlophus pacificus
M. habelii
M. grayii
M. duncanensis
M. delanonis
M. bivittatus
M. albemarlensis

 a  b

Lyriocephalus scutatus
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(Roughgarden & Pacala, 1989); 

 

Chamaelinorops

 

(Guyer & Savage, 1992). Other species are positioned
as in tree 1. 

 

Sceloporus

 

 are positioned using Reeder &
Wiens (1996), with additional species also positioned
as in tree 1. In addition to these, we also based Aga-
midae solely on A. E. Greer (unpublished data) with
those species unrepresented by Greer positioned using
Moody (1980).

 

T

 

RAIT

 

 

 

EVOLUTION

 

 

 

AND

 

 

 

CORRELATION

 

For the continuous variable of home range size, we
first log

 

10

 

 transformed values (Turner, Jennrich &
Weintraub, 1969; Christian & Waldschmidt, 1984)
and then calculated standardized independent con-
trasts (Felsenstein, 1985) using the program CAIC
v. 2.6.2 (http://evolve.bio.ic.ac.uk/evolve/software/caic/
index.html

 

;

 

 see also Purvis & Rambaut, 1995), which
were then used in subsequent regression analyses.
Independent contrasts are a common way to control
for possible phylogenetic non-independence of species
data (Harvey & Pagel, 1991). While the CAIC program
can calculate contrasts from trees possessing polyto-
mies, to be consistent with the phylogenetic hypothe-
sis used in the concentrated-changes test (CCT;
see below), we conducted analyses by randomly re-
solving polytomies using MacClade software v. 3.08a
(Maddison & Maddison, 1992, 1999). Branch length
data were available for only a few species pairs. We
therefore set all branch lengths equal to include the
maximum number of species in our analyses. We
selected the ‘Crunch’ algorithm for contrast analyses.
As required by this method (Purvis & Rambaut, 1995),
regressions were forced through the origin.

Body size covaries with home range size (Turner

 

et al

 

., 1969; Christian & Waldschmidt, 1984), so we
used additional published data (see Appendix) and
regressed contrasts for body size (maximum male
snout–vent length) against contrasts for home range
size. The residuals from this analysis were then used
to control for possible body size effects in subsequent
tests (Losos, 1990a).

To investigate patterns of trait evolution, we
used the phylogenetic program MacClade v. 3.08a
(Maddison & Maddison, 1999) to reconstruct ancestor
states for each trait. To use Maddison’s (1990) CCT,
we first had to randomly resolve polytomies using
MacClade. An additional requirement of the CCT is
that all data should be dichotomous. We created fre-
quency distribution plots of repertoire and home range
size and then used the median value to split the data
for each variable into two discrete states. Species
with greater than the median number of display
modifiers (4; range: 0–8) were scored as having large
modifier repertoires, while those with less than or
equal to this number were scored as having small

modifier repertoires. Similarly, species with smaller
than or equal to the median home range size (mass-
free residual 

 

−

 

0.13; range: 

 

−

 

2.04–1.83) were consid-
ered to have small home ranges. All other traits were
inherently dichotomous.

We reconstructed five alternative parsimony-based
ancestor states and applied the CCT to each. We began
by reconstructing ancestor states using Swofford &
Maddison’s (1987) linear parsimony MINSTATE &
MAXSTATE and Maddison’s (1991) squared-change
parsimony algorithms; the last of these provides iden-
tical results to those obtained using generalized least
squares and independent contrasts approaches
(Martins & Hansen, 1997; Pagel, 1999). MINSTATE
and MAXSTATE reconstructions reflect the smallest
and largest sets of equally parsimonious values at
each node, respectively. Squared-change parsimony
minimizes the sum of the squared changes on
branches and forces changes to spread out more
evenly over the tree. These algorithms are designed
for continuously distributed variables; traits that are
naturally discrete were therefore reconstructed as if
continuous. Areas were then defined manually using
the ‘fix state’ option in MacClade. For continuous vari-
ables (i.e. modifier repertoire size and home range
size) the median cut-off was used (see above). For dis-
crete variables (i.e. habitat, arboreality and diet),
branches with values less than 0.5 were defined as
lacking the trait, while those greater than or equal to
0.5 were defined as possessing it.

Finally, we applied the ACCTRAN (which ac-
celerates changes toward the root) and DELTRAN
(which delays changes away from the root) linear
parsimony algorithms (Swofford & Maddison, 1987).
These models require that variables be discrete.
Modifier repertoire size and home range size were
thus dichotomously transformed prior to ancestor
state reconstruction. All other traits were inherently
dichotomous.

We used the CCT to examine two hypotheses. First,
we examined directional changes in modifier reper-
toire size. We tested whether evolutionary gains in
large repertoire size were more concentrated than
expected by chance on branches that also possessed an
ecological trait. A significant association would indi-
cate that the trait preceded, or evolved simultaneously
with, the evolution of signal complexity. Second, we
investigated whether an ecological trait has led to
increased variation in repertoire size. We analysed the
probability that both gains 

 

and

 

 losses in large reper-
toire size were associated with an ecological trait: a
significant association would reveal that high levels of
evolutionary change in signal complexity were associ-
ated with the trait.

The CCT has low statistical power and is therefore
likely to be conservative (Lorch & Eadie, 1999). Fol-

http://evolve.bio.ic.ac.uk/evolve/software/caic/
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lowing Ortolani & Caro (1996) and suggestions by
Lorch & Eadie (1999), we considered associations with

 

P

 

 < 0.05 as highly significant, while 

 

P

 

-values falling
between 0.05 and 0.10 were considered to be margin-
ally significant. Out of 124 different species for which
modifier repertoire data were available (Fig. 1), only
those species having complete data on the ecological
trait of interest, were used in each analysis (range:
28–104 species). The large number of species being
investigated prevented us from calculating an exact
probability; we report 

 

P

 

-values calculated using a sim-
ulation algorithm (Maddison & Maddison, 1992) with
10 000 replicates. This method has been shown to pro-
vide results consistent with those of exact 

 

P

 

-value cal-
culations (Maddison, 1990).

 

RESULTS

 

Large modifier repertoire size evolved between two
and 19 times across the agamid and iguanid families
and has subsequently been lost between one and
18 times, depending on ancestor reconstruction
(MINSTATE, MAXSTATE, ACCTRAN, DELTRAN or
squared-change parsimony), tree topology (tree 1 or 2;
Fig. 1) and the number of species analysed.

We found no consistent relationship between evolu-
tionary gains in large modifier repertoire size and a
pre-existing preference for living in closed habitats.
There was a marginally significant association using
two sets of evolutionary assumptions (tree 2; Fig. 1,
MAXSTATE and DELTRAN), but in most cases, closed
habitat preference did not generate increases in re-
pertoire size (Table 1; Fig. 2). However, when both
gains and losses in large modifier repertoire size were
analysed, there was a significant association between
changes in repertoire complexity (regardless of direc-
tion) and closed habitat preference (Table 1). This sug-
gests that, while living in closed habitats does not
select for increased signal complexity, it does increase
the probability of evolutionary change.

Small home range size also resulted in greater evo-
lutionary change in modifier repertoire size in several
trait resolutions (Table 1). However, both regression
analyses (raw species data corrected for body size:
d.f. = 27, 

 

R

 

 = 0.33, one-tailed 

 

P

 

 = 0.043; species data
corrected for body size and phylogeny (tree 1):
d.f. = 27, 

 

R

 

 = 0.36, one-tailed 

 

P

 

 = 0.031; species data
corrected for body size and phylogeny (tree 2):
d.f. = 27, 

 

R

 

 = 0.28, one-tailed 

 

P

 

 = 0.075) and most trait
evolution analyses (Table 1; Fig. 3) revealed a strong
tendency for modifier use to be negatively associated
with home range size. Thus, the majority of available
evidence supports the hypothesis that having a
small home range is associated with increased signal
complexity.

Finally, in most evolutionary scenarios, there was a
tendency for gains in large modifier repertoire size to
occur in regions of the phylogenetic tree reconstructed
as being arboreal (Table 1; Fig. 4) or possessing a diet
of moving prey (Table 1; Fig. 5). These relationships
suggest that an arboreal lifestyle and foraging for
moving prey may have enabled, or pre-adapted, spe-
cies to evolve complex signals.

 

DISCUSSION

Current theories of signal evolution have identified a
variety of selective forces that promote or reduce com-
plexity in communicative systems (e.g. female mate
choice decisions: Andersson, 1994; male–male compe-
tition: Ord et al., 2001; properties of the signalling
environment: Endler, 1992; receiver sensory biases:
Ryan & Rand, 1993; predation risk: Stoddard, 1999;
and social complexity: Blumstein & Armitage, 1997).
Our analyses of macro-evolutionary trends in lizard
display modifier use suggest that ecological factors
have also played a role in promoting signal diversity
(Fig. 6). Specifically, habitat preference can promote
evolutionary plasticity in signal repertoires, while pos-
sessing a small home range, arboreal locomotion and
a diet of moving prey may facilitate (or be coupled
with factors that facilitate) the evolution of complex
signals.

SIGNAL DIVERSITY

The evolution of visual displays is clearly constrained
by an interaction between properties of receiver
sensory systems and those of the environment
through which signals must be transmitted (Endler &
McLellan, 1988; Endler, 1992; Fleishman, 1992).
Many studies have identified directional influences of
environmental factors on signal structure (Morton,
1975; Wiley & Richards, 1982; Endler, 1987, 1992;
Ryan et al., 1990; Fleishman, 1992; Marchetti, 1993;
Losos & Chu, 1998). In contrast, we have found that
closed habitat choice is significantly associated with
high levels of evolutionary lability, suggesting that
closed habitats promote a wide range of adaptive
solutions for signal design (Fig. 6). Few previous
studies have suggested that the environment produces
greater levels of signal diversity (although see
Alexander, 1962).

At least two non-mutually exclusive hypotheses
may explain the evolution of signal diversity in closed
habitats. First, because of the conservative nature of
the lizard visual system (Fleishman et al., 1995), there
is a certain amount of evolutionary inertia in sensory
processes. Thus, when distantly related species occur
in similar habitats, variation in signal repertoires may
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Figure 2. The evolution of large display repertoires and closed habitat preference in iguanian lizards reconstructed
assuming parsimony. Species are represented by numerals (see Fig. 1). Data were obtained from a variety of sources (see
Appendix). � = trait present, � = trait absent,  = equivocal reconstruction. Large repertoire size was assumed to be
absent following outgroup analysis at the ancestral node (see Ord et al., 2001).
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reflect historical constraints on the visual system of
each species.

Alternatively, the closed habitat species in our anal-
yses are largely anoles (Fig. 2) that occur in tropical
environments. Some tropical habitats support a
diversity of species, in part because of the oppor-
tunity to partition a complex environment (Brooks
& McLennan, 1991). There is thus the potential for
species groups living in such environments to possess
considerable diversity in ‘microhabitat’ preference.
Adaptation to microhabitats is known to produce dif-
ferences in anoline morphology and behaviour (Losos,
1990a,b). It is hence conceivable that, as overall
habitat complexity increases, the proliferation of
potential microhabitats leads to a greater range of
selective forces acting on signal design, resulting in
the observed variation in modifier repertoire size
evolution.

SIGNAL COMPLEXITY

Selection has apparently favoured the coevolution of
complex signalling behaviour with small home range
size (Fig. 6). We have previously found that increased
male–male competitive intensity (as reflected by SSD)
is  also associated with an increasingly elaborate
modifier repertoire (Ord et al., 2001). It is therefore
tempting to speculate that species possessing small
home ranges will consequently experience high levels
of male–male competition, at least when habitats are

saturated. The maximum distance at which a visual
display can be detected is correlated with territory
size in at least one species (A. auratus; Fleishman,
1992). Display rate has consistently been found to
increase dramatically with decreases in inter-male
distance (Hover & Jenssen, 1976; Scott, 1984; Losos,
1985a; Decourcy & Jenssen, 1994). The perceptual
constraints on signal design are relaxed at short
range, and complex signals may consequently have
evolved in species that often interact in this way.

However, while high densities cause some reduction
in the home range size of male lizards (Stamps, 1990),
the principal effect is of greater home range overlap
(Stamps, 1977, 1990; Stamps & Krishnan, 1998). We
suggest that a direct test of the relationship between
modifier use and population density will be necessary
to evaluate the probability that complex signals have
evolved in response to demographic pressures.

The traits of arboreality and feeding on mobile
prey both facilitate the evolution of complex signals
(Fig. 6). Motion perception (i.e. the ability to detect
and localize moving objects) is critical for feeding on
small fast-moving prey items (Jenssen & Swenson,
1974; Fleishman, 1992; Fleishman et al., 1995). Simi-
larly, the need quickly to negotiate a complex habitat
(Jenssen & Swenson, 1974) is likely to select for
enhanced sensory processing. Analyses of retinal
structure in anoles have revealed that they possess
both a temporal and a central fovea (Fite & Lister,

Figure 3. The evolution of large display repertoires and small home range size in iguanian lizards. See Fig. 2 legend for
details.
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Figure 4. The evolution of large display repertoires and arboreality in iguanian lizards. See Fig. 2 legend for details.
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Figure 5. The evolution of large display repertoires and feeding on moving prey in iguanian lizards. See Fig. 2 legend for
details.
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1981). Such bifoveal vision is believed to maximize
spatial resolution and visual acuity, allowing capture
of small prey, and has otherwise only been reported in
raptors (Fite & Lister, 1981). Signals are designed to
exploit the perceptual characteristics of receivers
(Guilford & Dawkins, 1991; Bradbury & Vehrencamp,
1998). For example, in lizards, the motion pattern of
introductory display components is tailored to effec-
tively stimulate the periphery of the visual field and
attract the receiver’s attention before the more
information-rich portion of the display is delivered
(Fleishman, 1988a, b, 1992). Visual system perfor-
mance will similarly influence the design of other dis-
play components by defining the visual cues that can
be efficiently detected or discriminated. Improve-
ments in the resolution and/or acuity of the visual sys-
tem may thus have enabled the evolution of more
complex display patterns.

Alternatively, the association between repertoire
complexity and diet may reflect differences in sociality.
Food abundance for insectivores is relatively uniform
compared to the typically fluctuating food resources of
many herbivores (see Stamps, 1983 and references
therein). This patchiness, and the consequent diffi-
culty in defending food resources for herbivores, may
have limited the evolution of territoriality, promoting
instead non-aggressive aggregations for exploiting
clumped resources (Stamps, 1977, 1983). The low fre-
quency of aggressive interactions in herbivores may
have relaxed selection for complex signals to mediate
territorial disputes.

In closing, we note that, while it is important to
identify all of the selective forces acting on signal
design, the mechanisms through which these act must
be explored if we are to develop a truly comprehensive
model to explain the evolution of communicative sys-
tems. Comparative studies of lizard displays reveal
that ecological factors sometimes act directionally, but
that they can also promote greater lability in signal
evolution (Fig. 6). We anticipate the possibility of sim-
ilar processes occurring in other taxa.
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APPENDIX

SOURCES CONSULTED FOR SPECIES DATA

Species
Repertoire
size

Habitat
preference

Home
range
size (m2)

Body 
size 
(mm SVL) Locomotion Diet References*

Acanthocercus atricollis 0 nd nd arboreal moving prey 1–2
Agama agama 4 other nd arboreal moving prey 2
Amblyrhynchus cristatus 5 other nd semiarboreal/terrestrial non-moving prey 3–6
Amphibolurus muricatus 2 other nd semiarboreal/terrestrial moving prey 7–10
Anolis acutus 2 closed 11 66 arboreal moving prey 11–13
A. aeneus 5 closed 7 60 arboreal moving prey 14–21
A. auratus 3 other 10 51 semiarboreal/terrestrial moving prey 13,22–24
A. brevirostris 1 closed nd semiarboreal/terrestrial nd 25
A. carolinensis 8 closed nd arboreal moving prey 13,26–41
A. carpenteri 5 other nd semiarboreal/terrestrial nd 42
A. caudalis 3 closed nd semiarboreal/terrestrial nd 25
A. chlorocyanus 4 nd nd arboreal nd 43,44
A. coelestinus 3 nd nd arboreal nd 44
A. conspersus 3 nd nd nd moving prey 36
A. cooki 6 nd nd nd moving prey 45
A. cristatellus 6 closed 1 70 arboreal moving prey 11,13,45
A. cupreus 5 closed 35 55 semiarboreal/terrestrial moving prey 12,13,42
A. cybotes 4 nd nd semiarboreal/terrestrial moving prey 46–50
A. distichus‡ 2 other 16 50 arboreal moving prey 12,13,50,51
A. equestris 4 nd nd arboreal moving prey 31,52
A. evermanni 6 nd nd nd moving prey 45
A. grahami 4 closed nd arboreal moving prey 36,51
A. gundlachi 6 closed nd semiarboreal/terrestrial moving prey 13,45,51
A. humilis 5 closed nd semiarboreal/terrestrial moving prey 13,45
A. intermedius 5 nd nd arboreal nd 42
A. limifrons 5 closed nd semiarboreal/terrestrial moving prey 13,42,53,54
A. lineatopus 5 other 45 70 arboreal moving prey 12,13,51,55
A. luciae 5 nd nd arboreal moving prey 21,51
A. marcanoi 5 nd nd semiarboreal/terrestrial moving prey 46–48
A. monensis 6 nd nd nd moving prey 45
A. nebulosus 5 closed 2 42 semiarboreal/terrestrial moving prey 13,56–59
A. opalinus 8 other nd semiarboreal/terrestrial moving prey 13,51,60,61
A. pentaprion 5 nd nd arboreal nd 42
A. roquet‡ 6 other nd arboreal moving prey 21,51
A. sagrei‡ 6 other 18 55 arboreal moving prey 12,13,27,32,36,

41,49,51
A. sericeus 5 nd nd arboreal nd 42
A. townsendi 5 closed nd nd nd 62,63
A. trinitatis 6 other nd semiarboreal/terrestrial moving prey 20,21,51
A. tropidolepis 5 closed nd semiarboreal/terrestrial nd 42
A. valencienni† 0 nd nd nd moving prey 64
A. websteri 1 closed nd semiarboreal/terrestrial nd 25
Brachylophus fasciatus 3 closed nd arboreal non-moving prey 5,38,51,65
Callisaurus draconoides 5 other nd nd moving prey 51,66
Chalarodon 5 other 79 87 nd moving prey 67

madagascariensis
Chamaelinorops barbouri 2 closed 1 41 semiarboreal/terrestrial moving prey 68
Conolophus pallidus 4 other nd semiarboreal/terrestrial non-moving prey 5,69
C. subcristatus 6 other nd semiarboreal/terrestrial non-moving prey 5,69
Cophosaurus texanus 5 other nd nd moving prey 66
Crotaphytus collaris 4 other nd semiarboreal/terrestrial moving prey 38,51,70–72
Ctenophorus decresii 5 other nd semiarboreal/terrestrial moving prey 8,73
C. fionni 5 other nd semiarboreal/terrestrial moving prey 8,73
C. fordi 1 other nd semiarboreal/terrestrial moving prey 8,74,75
C. maculosus 4 other 801 69 semiarboreal/terrestrial moving prey 76,77
C. nuchalis 5 other nd semiarboreal/terrestrial moving prey 7,10
C. pictus 2 other nd semiarboreal/terrestrial moving prey 10,78
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C. vadnappa 5 other nd semiarboreal/terrestrial moving prey 8,10,73
Ctenosaura hemilopha 4 other nd nd non-moving prey 5,79,80
C. quiquecarinata 0 other nd nd moving prey 5,51
C. similis 1 other nd semiarboreal/terrestrial non-moving prey 5,38,51,81
Cyclura carinata 5 other 1924 267 semiarboreal/terrestrial non-moving prey 5,6,12,82–84
C. collei 0 nd nd semiarboreal/terrestrial nd 6,82
C. cornuta 2 other nd semiarboreal/terrestrial non-moving prey 5,6,38,51,82,85
C. cychlura 3 nd nd semiarboreal/terrestrial nd 5,6,82
C. nubila 1 nd nd semiarboreal/terrestrial non-moving prey 5,6,38,82,86
C. ricordi 0 nd nd semiarboreal/terrestrial non-moving prey 6,82,85
C. rileyi 0 nd nd semiarboreal/terrestrial nd 5,6,82
Dipsosaurus dorsalis 3 other 1069 144 semiarboreal/terrestrial non-moving prey 5,12,84,87–89
Draco spilopterus 1 closed nd arboreal nd 4,51
Gambelia sila 4 other 2100 97 nd moving prey 12,90,91
G. wislizenii 3 other 23 205 102 semiarboreal/terrestrial moving prey 12,38,51,91,92
Holbrookia lacerata 5 other nd nd moving prey 66
H. maculata 5 other 2205 60 semiarboreal/terrestrial moving prey 66,84
H. propinqua 5 other nd nd moving prey 66,93–96
Hydrosaurus pustulatus 5 closed nd arboreal moving prey 51,96
Iguana iguana 7 closed 1333 360 arboreal non-moving prey 5,12,97–100
Leiocephalus carinatus 3 other nd semiarboreal/terrestrial moving prey 38,51,101
Lophognathus temporalis 1 other nd semiarboreal/terrestrial moving prey 8,10,102
Lyriocephalus scutatus† 0 other nd arboreal moving prey 31,51
Microlophus albemarlensis 4 other 374 104 semiarboreal/terrestrial moving prey 12,38,51,103
M. bivittatus 4 other nd semiarboreal/terrestrial moving prey 38,51,103
M. delanonis 4 other 252 129 semiarboreal/terrestrial moving prey 12,38,51,103
M. duncanensis 4 other nd semiarboreal/terrestrial moving prey 38,51,103
M. grayii 4 other nd semiarboreal/terrestrial moving prey 38,51,103
M. habelii 4 other nd semiarboreal/terrestrial moving prey 38,51,103
M. pacificus 4 other nd semiarboreal/terrestrial moving prey 38,51,103
Petrosaurus mearnsi 2 other nd semiarboreal/terrestrial moving prey 51,104–107
Phrynocephalus arabicus† 0 other nd nd nd 108
P. maculatus† 0 other nd semiarboreal/terrestrial moving prey 109
Phrynosoma cornutum 0 other nd semiarboreal/terrestrial moving prey 72,110
P. coronatum 0 other nd semiarboreal/terrestrial moving prey 72,110
P. douglassii 0 other nd semiarboreal/terrestrial moving prey 72,110
P. modestum 0 other nd semiarboreal/terrestrial moving prey 72,110
P. platyrhinos 0 other nd semiarboreal/terrestrial moving prey 72,110
P. solare 0 other nd semiarboreal/terrestrial moving prey 72,110
Pogona barbata 6 other nd semiarboreal/terrestrial moving prey 7,8,31,111,112
Sauromalus ater 1 other nd semiarboreal/terrestrial nd 5,6,38
S. obesus 4 other 12 610 164 semiarboreal/terrestrial non-moving prey 5,6,12,38,113
Sceloporus cyanogenys 2 other nd semiarboreal/terrestrial moving prey 51,114
S. dugesii 2 other nd semiarboreal/terrestrial nd 114
S. graciosus 4 other 47 57 semiarboreal/terrestrial moving prey 115–119
S. jarrovii 4 other 489 97 semiarboreal/terrestrial moving prey 12,51,114,

119–122
S. magister 2 other nd semiarboreal/terrestrial moving prey 51,123
S. merriami 4 other 201 58 semiarboreal/terrestrial moving prey 24,106,119,

122,124,125
S. mucronatus 2 other nd semiarboreal/terrestrial nd 114
S. occidentalis 2 other 6801 70 semiarboreal/terrestrial moving prey 12,51,107,119,

121,126–128
S. ornatus 2 other nd semiarboreal/terrestrial nd 51,106,114
S. poinsetti 2 other nd semiarboreal/terrestrial moving prey 51,114
S. torquatus 2 other nd nd nd 114
S. undulatus‡ 3 other 446 83 semiarboreal/terrestrial moving prey 49,84,117–119,

121,129–131
Uma exsul 7 other nd semiarboreal/terrestrial moving prey 132

Species
Repertoire
size

Habitat
preference

Home
range
size (m2)

Body 
size 
(mm SVL) Locomotion Diet References*
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U. inornata 6 other nd semiarboreal/terrestrial moving prey 132,133
U. notata 6 other nd semiarboreal/terrestrial moving prey 132,133
U. paraphygas 7 other nd semiarboreal/terrestrial nd 132
U. scoparia 6 other nd semiarboreal/terrestrial moving prey 132,133
Urosaurus bicarinatus 0 nd nd arboreal nd 105,106
U. graciosus 2 other nd arboreal moving prey 51,104–106
U. microscutatus 0 other nd semiarboreal/terrestrial moving prey 51,105,106
U. nigricaudus 0 other nd semiarboreal/terrestrial nd 105,106
U. ornatus 2 other 154 53 arboreal moving prey 84,105,125,

134–142
Uta antigua 2 other nd nd nd 51,105,143
U. nolascensis 2 other nd nd nd 51,105,143
U. palmeri 2 other nd nd nd 51,105,143
U. squamata 3 other nd nd nd 105,121,143,

144
U. stansburiana 4 other 1033 54 semiarboreal/terrestrial moving prey 12,51,84,104,

105,143–145

Species
Repertoire
size

Habitat
preference

Home
range
size (m2)

Body 
size 
(mm SVL) Locomotion Diet References*

APPENDIX Continued

‘nd’ = no data, all traits defined in text.
*1. Cowles (1956); 2. Harris (1964); 3. Carpenter (1966a); 4. Schmidt (1935); 5. Carpenter (1982); 6. De Queiroz (1987); 7.
Carpenter, Badham & Kimble (1970); 8. Cogger (1996); 9. Groom (1973); 10. Wilson & Knowles (1988); 11. Philibosian
(1975); 12. Stamps (1983); 13. Andrews (1979); 14. Stamps & Barlow (1973); 15. Stamps (1978); 16. Stamps & Crews
(1976); 17. Stamps (1976); 18. Stamps (1973); 19. Stamps & Krishnan (1994); 20. Gorman (1969); 21. Gorman (1968); 22.
Fleishman (1988a); 23. Fleishman (1992); 24. Fleishman (1988c); 25. Jenssen & Gladson (1984); 26. Cooper (1977); 27.
Tokarz & Beck (1987); 28. Jenssen, Greenberg & Hovde (1995); 29. Evans (1935); 30. McMann (1993); 31. Bels (1992); 32.
Evans (1938a); 33. Greenberg & Noble (1944); 34. Crews (1975); 35. Greenberg (1977); 36. Macedonia & Stamps (1994);
37. Mason & Adkins (1976); 38. Ackerman (1998); 39. Greenberg, Chen & Crews (1984); 40. Decourcy & Jenssen (1994);
41. Evans (1938b); 42. Echelle et al. (1971); 43. Bels (1986); 44. Garcea & Gorman (1968); 45. Ortiz & Jenssen (1982); 46.
Losos (1985a); 47. Losos (1985b); 48. Macedonia, Evans & Losos (1994); 49. Noble & Teale (1930); 50. Jenssen (1983); 51.
Rogner (1997); 52. Font & Kramer (1989); 53. Jenssen & Hover (1976); 54. Hover & Jenssen (1976); 55. Rand (1967); 56.
Jenssen (1970a); 57. Jenssen (1971); 58. Jenssen (1970b); 59. Lister & Aguayo (1992); 60. Jenssen (1979a); 61. Jenssen
(1979b); 62. Jenssen & Rothblum (1977); 63. Carpenter (1965); 64. Hicks & Trivers (1983); 65. Greenberg & Jenssen (1982);
66. Clarke (1965); 67. Blanc & Carpenter (1969); 68. Jenssen & Feely (1991); 69. Carpenter (1969); 70. Yedlin & Ferguson
(1973); 71. Fitch (1956); 72. Greenberg (1945); 73. Gibbons (1979); 74. Webber (1981); 75. Cogger (1978); 76. Mitchell (1973);
77. Greer (1989); 78. Mayhew (1963); 79. Carothers (1981); 80. Brattstrom (1974); 81. Henderson (1973); 82. Martins &
Lamont (1998); 83. Iverson (1979); 84. Christian & Waldschmidt (1984); 85. Carey (1975); 86. Buide (1951); 87. Carpenter
(1961a); 88. Norris (1953); 89. Parker (1972); 90. Montanucci (1965); 91. Tollestrup (1983); 92. Montanucci (1967); 93.
Cooper (1985); 94. Cooper & Guillette (1991); 95. Cooper (1988); 96. Gonzales (1974); 97. Dugan (1982); 98. Distel & Veazey
(1982); 99. Lazell (1973); 100. Swanson (1950); 101. Evans (1953); 102. Blamires (1998); 103. Carpenter (1966b); 104.
Carpenter (1962); 105. Purdue & Carpenter (1972a); 106. Wiens (1993); 107. Stebbins (1966); 108. Ross (1995); 109. Ross
(1989); 110. Lynn (1965); 111. Brattstrom (1971); 112. Lee & Badham (1963); 113. Nagy (1973); 114. Hunsaker (1962);
115. Martins (1991); 116. Martins (1993a); 117. Ferguson (1971); 118. Ferguson (1973); 119. Martins (1994); 120. Ruby
(1977); 121. Ransom (1981); 122. Martins (1993b); 123. Vitt et al. (1974); 124. Carpenter (1961b); 125. Milstead (1970);
126. Tarr (1982); 127. Fitch (1940); 128. Purdue & Carpenter (1972b); 129. Cooper & Burns (1987); 130. Rothblum &
Jenssen (1978); 131. Roggenbuck & Jenssen (1986); 132. Carpenter (1967); 133. Carpenter (1963); 134. Carpenter & Grubitz
(1961); 135. Mahrt (1998); 136. Thompson & Moore (1992); 137. Carpenter & Grubitz (1960); 138. Zucker (1987); 139.
M'Closkey, Deslippe & Szpak (1990); 140. Zucker (1989); 141. Deslippe et al. (1990); 142. M'Closkey, Biana & Russell (1987);
143. Ferguson (1970a); 144. Ferguson (1970b); 145. Ferguson (1966).
†Species not possessing core displays.
‡Species typically found in numerous habitats.


