Supporting Information

Comparative Field Study, the Fossil Record and Phylogenetic Analyses

Table S1. Species and study locations of species tested with snake, weasel and deer scent and
 sample sizes and proportions of individuals that applied scent for each location.

		Proportion		
		Scent Application		
Species	Study Location	Snake	Weasel	Deer
	Caballo Lake State Park,	10/12	8/14	0/11
Rock squirrel	Caballo, New Mexico ¹			
(S. variegatus)	Guadalupe Mountains National	2/2	2/3	0/3
	Park, Texas ¹			
	Lake Solano County Park,	8/11	0/12	0/11
California ground	Winters, California ²			
squirrel (S. beecheyi)	Hamel Ranch,	0/6	0/4	0/4
	Davis, California ²			
	San Ignacio,	8/9	4/11	0/6
Baja California rock	Baja California Sur, Mexico ^{3,4}			
squirrel (S. atricapillus)	San Javier,	1/2	0/1	0/5
	Baja California Sur, Mexico ^{3,4}			
	Lassen Volcanic National Park,	0/5	0/5	0/2
Golden-mantled ground	California ²			
squirrel (S. lateralis)	Great Basin National Park, 0/2 0/2		0/2	0/3

	Nevada ⁵			
	Plaza di San Jose,	4/5	0/7	0/4
Mexican ground squirrel	Carlsbad, New Mexico ¹			
(S. mexicanus)	Pecos River Walk Park,	4/5	0/4	0/5
	Carlsbad, New Mexico ¹			
	Yosemite National Park,	0/9	2/10	0/7
Belding's ground	California ²			
squirrel (S. beldingi)	Malheur National Wildlife	0/12	0/9	0/8
	Refuge, Oregon ⁵			
	San Ignacio,	4/6	2/7	0/3
White-tailed antelope	Baja California Sur, Mexico ^{3,4}			
squirrel (A. leucurus)	San Javier,	-	-	0/3
	Baja California Sur, Mexico ^{3,4}			
Allen's chipmunk	Lassen Volcanic	0/4	0/3	0/3
(Neotamias senex)	National Park, California ²			
Uinta chipmunk	Great Basin	0/4	0/2	0/2
(Neotamias umbrinus)	National Park, Nevada ⁵			
Siberian chipmunk	Korea ⁶	-	-	-
(Eutamias sibiricus) ^a				
Round-tailed ground	Las Cruces,	-	-	-
squirrel (S. spilosoma) ^b	New Mexico ¹			

Note: Rattlesnake species used are indicated by superscript numbers next to study locations.

^aKobayashi & Watanabe 1986; ^bArrowood unpublished data

¹Crotalus atrox, ²C. oreganus oreganus, ³C. ruber, ⁴C. mitchelli, ⁵C. oreganus lutosus, ⁶Gloyidus blomhoffi and Elaphe climacophora

Ground Squirrel and Predator Ancestors Sympatry in the Miocene (23.8-5.3 mya) and Pliocene (5.3-1.8 mya)

The existing fossil record in western North America places the first co-occurrence between ground squirrels and rattlesnake ancestors at approximately 15 million years ago in Texas, USA (Black 1963; Holman 1977, 1979; Carrasco et al. 2005) and the first co-occurrence between ground squirrel, chipmunk and weasel ancestors approximately 16 million years ago in Wyoming, USA (Black 1963; Carrasco et al. 2005; table A2). The limited fossil records of the proposed direct ancestors of California ground squirrels, rock squirrels, Baja California rock squirrels and golden-mantled ground squirrels - S. shotwelli and S. wilsoni - was not found to cooccur with rattlesnake species. But S. shotwelli fossils co-occurred with weasel ancestor fossils in Nebraska, USA approximately 6 million years ago. In addition, the proposed ancestor of S. shotwelli and S. wilsoni – S. primitus – co-occurred with a weasel ancestor about 15 million years ago in Montana, USA (Black 1963; Carrasco et al. 2005; table A2). The direct ancestor of Belding's ground squirrel and related species - S. mckayensis - was not found to co-occur with either rattlesnake nor weasel ancestors, but fossils of this species' were only found at a single site in Oregon, USA, in strata laid down approximately 6 million years ago (Black 1963; Carrasco et al. 2005; table A2).

Million	Yea	urs Ago	Squirrel species	Mustela species	Viperidae species
		~4-1.8	Ammospermophilus jefferiesi: MX ⁵		Crotalus spp.: MX ⁵
OCENE -1.8 mya)	(p (TIT () '	~5.3-3.6	Spermophilus bensoni: AZ ² Spermophilus howelli: TX, KS ² Spermophilus rexroadensis: KS ² Spermophilus spp: TX ²	Mustela rexroadensis: KS ²	Crotalus viridis: KS ³ Crotalus atrox: TX ⁴
PL]		~5.9-4.7	Spermophilus shotwelli: NE ²		
		~5.9-5.0	Spermophilus matthewi: NE ² Spermophilus shotwelli: NE ²	Mustela rexroadensis: NE ² Martinogale alveodens: NE ²	
		~6.7-5.9	Spermophilus mckayensis: OR ² Spermophilus shotwelli: OR ² Spermophilus wilsoni: CO ²		
		~7.5-6.7	Spermophilus shotwelli: OR ² Spermophilus wilsoni: OR ²		
		~8.0-7.5	Spermophilus argonautus: NE ²	Pliogale furlongi: NE ²	
		~9.0-7.0	Spermophilus spp:NE ² Ammospermophilus spp: CA ²	Mustela spp: NE ²	
		~12.4-9.5	Spermophilus wilsoni: WA ² Ammospermophilus fossilis: CA ² Ammospermophilus junturensis: OR ² , NE ² Protospermophilus quatalensis: CA ²		
	~	-13.6-12.5	Tamias spp: NE ² Protospermophilus spp: NE ²	$Miomustela\ madisonae:\ NE^2$	Viperidae: NE ³
EPOCH NE nya)	~	-14.8-12.5	Spermophilus primitivus: WY ² Spermophilus tephrus: OR ² Miospermophilus spp: NE ² Spermophilus spp: NE ² Tamias ateles: NE ²	Mustela spp: NE ² Miomustela madisonae: NE ²	
	~	-14.9-14.6	Protospermophilus oregonensis: MT ² Protospermophilus malheurensis: OR ² Miospermophilus bryanti: MT ² Protospermophilus quatalensis: TX ² Spermophilus shotwelli: MT ²		
	~	-15.9-14.8	Protospermophilus oregonensis: OR ² Protospermophilus malheurensis: OR ² Protospermophilus angusticep: MT ² Protospermophilus quatalensis: TX ² Spermophilus primitus: MT ²	Miomustela madisonae: MT ²	Viperidae: TX ³
	, ya	-16.6-16.5	Protospermophilus angusticep: NV ²		
MIOCE	()/-0//-7)	~17.5-15.9	Protospermophilus kelloggi: CA ² , WY ² Tamias spp: CA ² , WY ² Miospermophilus wyomingensis: CA ² , NE ² , WY ²	Miomustela madisonae: WY ²	
ш	~	-18.8-17.5	Protospermophilus kelloggi: CO ² Miospermophilus bryanti: CO ²		
DCN	~	29.8-23.8	Protospermophilus vortmani: OR ²		
DLIG	~	37.0-30.5	Protosciuris jeffersoni: MT ¹		

Table S2. Pliocene and Miocene co-occurrences of squirrel, rattlesnake and weasel ancestors.

¹Korth 1994; ²Black 1963, Carrasco 2005; ³Holman 1977, Homan 1979; ⁴Brattstrom 1967; ⁵Miller 1980
 Table S3. Proportions of Pleistocene (1.8 million – 100 thousand year ago) fossil sites with

	Historic	Historic	Current	Current
Species	Snake	Weasel	Snake	Weasel
Rock squirrel	5/21	6/21	9/9	1
	0.24	0.28	1.0	
California ground squirrel	6/9	5/9	5/6	1
	0.67	0.56	0.83	
Baja California rock squirrel	-	-	3/3	0
			1.0	
Golden-mantled ground squirrel	2/19	8/19	1/8	1
	0.11	0.28	0.13	
Mexican ground squirrel	1/2	0/2	7/7	1
	0.50	0	1.0	
Belding's ground squirrel	0/5	1/5	2/6	1
	0	0.20	0.33	
White-tailed antelope squirrel	-	-	3/3	0
			1.0	
Allen's chipmunk	-	-	0/4	1
			0	
Uinta chipmunk	-	-	0/7	1
			0	
Siberian chipmunk	-	*	~0.50	*

predator fossils and proportions of current squirrel-predator co-occurrence.

Round-tailed ground squirrel	2/6	*	8/8	*
	0.33		1.0	

Note: Bolded values indicate which species co-occurred with the predator.

'-' = no (fossil) data available

'*' = species not tested with weasel scent

Ground Squirrel Phylogeny

Our ground squirrel phylogeny (figure S1) is modified from Harrison et al. 2003, including information from Piaggio & Spicer 2001 and Mercer & Roth 2003 for *Eutamias* and *Neotamias* species (created in Mesquite; Maddison & Maddison 2008). The divergence times are from Harrison et al. 2003 and Mercer and Roth 2003. The species we tested for scent application in this study are indicated with arrows while those tested by other researchers (Kobayashi & Watanabe 1986; Arrowood unpublished data) are indicated with an arrow and asterisk.

Figure S1. Phylogeny of ground squirrels and chipmunk outgroup species.

Million of Years Ago

Table S4a. Transition parameters for the character states of rattlesnake presence (Pred) and rattlesnake scent application (SSA) and results for the independent and dependent correlated traits models (Pagel 1994) for rattlesnake presence and scent application.

	Transition	\mathbf{q}_{ij}	Independent	Dependent	Likelihood
			model	model	Ratio (LR)
Gain	No Pred, No SSA to No Pred, SSA	q ₁₂	0.06681	0.07035	
SSA	Pred, No SSA to Pred, SSA	q ₃₄		5.46777	
Retain	No Pred, SSA to Pred, SSA	q ₂₄		12.26164	
SSA	Pred, SSA to No Pred, SSA	q ₄₂		0.000002	
Lose	No Pred, SSA to No Pred, No SSA	q_{21}	0.04732	1.36796	
SSA	Pred, SSA to Pred, No SSA	q ₄₃		0.06255	
No	Pred, No SSA to No Pred, No SSA	q ₃₁	0.04732	14.32849	
SSA	No Pred, No SSA to Pred, No SSA	q ₁₃	0.06681	0.0000003	
			LI	LD	
			-11.5970	-5.1190	12.95
					p = 0.011

Note: Likelihood and p values are in bold.

Table S4b. Transition parameters for the character states of weasel presence (Pred) and weasel scent application (WSA) and results for the independent and dependent correlated traits models (Pagel 1994) for weasel presence and scent application.

	Transition	\mathbf{q}_{ij}	Independent	Dependent	Likelihood
			model	model	Ratio (LR)
Gain	No Pred, No WSA to No Pred, WSA	q ₁₂	36.8785	43.25284	
WSA	Pred, No WSA to Pred, WSA	q ₃₄		9.333239	
Retain	No Pred, WSA to Pred, WSA	q ₂₄		22.76193	
WSA	Pred, WSA to No Pred, WSA	q ₄₂		17.70378	
Lose	No Pred, WSA to No Pred, No WSA	q ₂₁	8.1952	0.000000	
WSA	Pred, WSA to Pred, No WSA	q ₄₃	11.8486	23.33244	
No	Pred, No WSA to No Pred, No WSA	q ₃₁	14.8107	0.000000	
WSA	No Pred, No WSA to Pred, No WSA	q ₁₃		0.56096	
			LI	LD	
			-10.0118	-8.01712	3.989
					p = 0.407

Note: Likelihood and p values are in bold.

Contingency-test models	k	LD _n	AICc
Unrestricted			
	8	-5.119	98.23
Restricted			
q ₃₄ =q ₂₁	7	-5.127	61.58
q ₁₂ =q ₄₃	7	-5.119	61.57
q ₃₄ =q ₂₁ ;	6	-5.119	43.23
q ₁₂ =q ₄₃			
$q_{34}=q_{21}=q_{24}=q_{31};$	4	-5.12	24.90
q ₁₂ =q ₄₃			
q ₃₄ =q ₂₁ ;	4	-5.10	24.86
$q_{12}=q_{43}=q_{13}=q_{42}$			
$q_{34}=q_{21}=q_{24}=q_{31};$	2	-5.203	15.90*
q ₁₂ =q ₄₃ =q ₁₃ =q ₄₂			
$q_{34} = q_{21} = q_{24} = q_{31} = q_{12} = q_{43} = q_{13} = q_{42}$	1	-11.79	26.02

Table S5. Akaike information criterion (AIC) and likelihood values (LD) for dependent model selection.

Note: $q_{i,j}$'s are transition rates between two states, k is the number of parameters and an asterisk indicates best model.

Rattlesnake Foraging Experiment

Figure S2. Rattlesnake arena (0.63 X 0.51 X 0.80 m) a) starting chamber, b) foraging arena, c) divider, and d) video camera affixed to plexiglass arena cover. Within the arena are two artificial burrows (i and ii), one contains the stimulus prey and the other remains empty. Inset shows visual blocker and stimulus prey in wire cage.

