The University of New South Wales School of Mathematics and Statistics

Mathematics Drop-in Centre

POWER LAWS

It is important to be able to simplify or expand algebraic expressions involving powers. We begin with the following rules:

$$a^{x}a^{y} = a^{x+y}; \quad \frac{a^{x}}{a^{y}} = a^{x-y}; \quad (a^{x})^{y} = a^{xy}.$$
 (*)

It is worth spending a little time in *understanding* these rules: if you try to memorise them without understanding you will find this topic very difficult later on. To understand the first, consider for example

$$a^{8}a^{3} = (aaaaaaaa)(aaa) = aaaaaaaaaaa = a^{11} = a^{8+3}$$

The key step is the second: it should be easy to see that we can combine a group of eight as and a group of three into a group of eleven. Similarly, the last formula in (*) is illustrated by

$$(a^{2})^{5} = (a^{2})(a^{2})(a^{2})(a^{2})$$

= (aa)(aa)(aa)(aa)(aa) = aaaaaaaaaa = a^{10} = a^{2\times 5},

where we have combined five groups of two as into a single group of ten.

Three more important rules are

$$a^0 = 1$$
; $a^1 = a$; $a^{-y} = \frac{1}{a^y}$.

To understand why the last of these is true, go back to the second formula in (*) and substitute x = 0.

(Some of) the above formulae involve the same base to two different powers. There are also rules where we have an expression involving two bases to the same power:

$$a^x b^x = (ab)^x$$
; $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$.

Once again you should try to understand why these are true. For the first, we know that we can multiply numbers in any order we like without affecting the result; so, for example,

$$(ab)^5 = (ab)(ab)(ab)(ab)(ab) = (aaaaa)(bbbbb) = a^5b^5$$
.

Note that expansions like $(a + b)^x$ are not so easy (**not** $a^x + b^x !!$) and are usually treated by means of the Binomial Theorem.

Although we have so far been thinking of the exponents x, y as integers, the same rules apply for any real numbers. A fractional power means a root: for example

$$a^{1/2} = \sqrt{a}$$
; $a^{1/3} = \sqrt[3]{a}$; $a^{4/5} = (a^4)^{1/5} = \sqrt[5]{a^4}$.

It is harder to say precisely what is meant by an expression like a^{π} (remember that π is not a fraction) – follow calculus lectures for this. Finally, remember that a power expression may be undefined for certain values of a. For example, $a^{1/2}$ is meaningless if a is negative, and a^{-2} is meaningless if a = 0.

Examples.

•
$$\frac{a^2(ab)^3}{b^4} = \frac{a^2a^3b^3}{b^4} = a^5b^{-1} = \frac{a^5}{b}.$$

•
$$(2c^2d^5)^3 = 2^3(c^2)^3(d^5)^3 = 8c^6d^{15}$$
.

- $(x^4y^5z^6y^7z^8)^{1/4} = (x^4y^{12}z^{14})^{1/4} = xy^3z^{7/2} = xy^3\sqrt{z^7}.$
- $(x^{1\cdot 2}y^{3\cdot 4})^2 x^{-5\cdot 6} = x^{2\cdot 4}y^{6\cdot 8}x^{-5\cdot 6} = x^{-3\cdot 2}y^{6\cdot 8}.$

EXERCISES.

Please try to complete the following exercises. Remember that you **cannot** expect to understand mathematics without doing lots of practice! Please do not look at the answers before trying the questions. If you get a question wrong you should go through your working carefully, find the mistake and fix it. If there is a mistake which you cannot find, or a question which you cannot even start, please consult your tutor or the Mathematics Drop-in Centre.

- 1. Following the examples in the first paragraph, write powers in terms of multiplication in order to "explain" the identity $a^9/a^4 = a^{9-4}$.
- 2. Write the following expressions in terms of products of powers, where each pronumeral occurs once only:

(a)
$$\frac{x^9(xy^5)^{-2}}{(x^4y)^3}$$
;
(b) $(a^{2/3}b^{4/5})^6$;
(c) $\frac{(x^5y^3)^{1\cdot3}}{(x^{2\cdot4}y^{3\cdot1})^2}$;
(d) $\frac{(abc^2)^3}{(b^2c)^5} / \frac{(a^3b)^6}{(a^4bc^2)^2}$.

- 3. Write the following radical expressions in terms of powers, and then simplify them:
 - (a) $\sqrt{a^3 y^7} \sqrt[3]{a^8 y^{-10}};$ (b) $\frac{\sqrt[4]{x^5 y^6}}{(\sqrt{x} \sqrt[3]{y})^7}.$
- 4. Write the following power expressions in terms of radicals (that is, square roots, cube roots etc):
 - (a) $p^{1/6}q^{2/7}$; (b) $\frac{(x^{1/3}y^{1/4})^2}{x^{1/6}y^{3/5}}$.

ANSWERS.

1.
$$\frac{a^{9}}{a^{4}} = \frac{aaaaaaaaa}{aaaa} = aaaaa = a^{5} = a^{9-4}$$
.
2. (a) $x^{-5}y^{-13}$, or $\frac{1}{x^{5}y^{13}}$;
(b) $a^{4}b^{24/5}$;
(c) $x^{1\cdot7}y^{-2\cdot3}$, or $\frac{x^{1\cdot7}}{y^{2\cdot3}}$;
(d) $a^{-7}b^{-11}c^{5}$, or $\frac{c^{5}}{a^{7}b^{11}}$.
3. (a) $a^{25/6}b^{1/6}$;
(b) $x^{-9/4}y^{-5/6}$.
4. (a) $\sqrt[6]{p}\sqrt[7]{q^{2}}$;
(b) $\frac{\sqrt{x}}{\sqrt[10]{y}}$.