The University of New South Wales School of Mathematics and Statistics

Mathematics Drop-in Centre

BASIC DIFFERENTIATION

You need to know securely the derivatives of simple functions. Some of those given below can be calculated from others by using differentiation rules; however, you don't want to do this for functions you will be using frequently, and so we recommend that you memorise all of the following.

function	derivative
constant	0
x^n	nx^{n-1}
e^x	e^x
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
$\tan x$	$\sec^2 x$
$\ln x$	$\frac{1}{x}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Observe that the second last entry in the above table is a consequence of the second. We have

$$\frac{1}{x} = x^{-1}$$
 and so $\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}(x^{-1}) = (-1)x^{-2} = -\frac{1}{x^2}$.

We have, however, given this its own place in the table, and have suggested that you memorise it, because many students make the mistake of saying that the derivative of 1/x is $\ln x$, which is the wrong way round. You can find the derivatives of reciprocal powers of x in a very similar way, for example,

$$\frac{d}{dx}\left(\frac{1}{x^8}\right) = \frac{d}{dx}(x^{-8}) = (-8)x^{-9} = -\frac{8}{x^9}$$

The last entry in the table can also be found from the second,

$$\sqrt{x} = x^{1/2}$$
 and so $\frac{d}{dx}(\sqrt{x}) = \frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$

Other roots can be treated in the same way.

The **second derivative** of a function means the derivative of the derivative. For example, the derivative of x^7 is $7x^6$, and so the second derivative of x^7 is

$$\frac{d^2}{dx^2}(x^7) = \frac{d}{dx}(7x^6) = 7(6x^5) = 42x^5$$

If you differentiate again, you get the **third derivative**, and so on.

Notation. Please use notation accurately: $\frac{d}{dx}$ means "the derivative of", and $\frac{dy}{dx}$ means "the derivative of y". So "the derivative of x^5 " is written $\frac{d}{dx}(x^5)$. Please do not write " $\frac{dy}{dx}(x^5)$ ", it is nonsense!!

EXERCISES.

Please try to complete the following exercises. Remember that you **cannot** expect to understand mathematics without doing lots of practice! Please do not look at the answers before trying the questions. If you get a question wrong you should go through your working carefully, find the mistake and fix it. If there is a mistake which you cannot find, or a question which you cannot even start, please consult your tutor or the Mathematics Drop-in Centre.

- 1. Write out the table of basic derivatives from memory.
- 2. You should be familiar with the "dash" notation for derivatives. For example, the second entry in the table can be stated as "if $f(x) = x^n$ then $f'(x) = nx^{n-1}$ ". Write out the whole table in this format.
- 3. Write down the derivatives of the following functions:

$$x^{6}$$
, $x^{1/6}$, $\frac{1}{x^{6}}$, $\tan x$, $\frac{1}{x}$, $\ln x$.

- 4. Find the derivatives of $\sqrt[3]{x}$, $\sqrt[4]{x^5}$, $x^{3\cdot 14}$, $x^{-3\cdot 14}$, $\cos x$.
- 5. (a) Find the second and third derivatives of $\ln x$.
 - (b) Find the fourth derivative of $\sin x$.
 - (c) Find the 99th derivative of e^x .
- 6. You need to be equally comfortable with differentiation if the variable is something other than x. For example, to find the derivative with respect to t of t^3 we write

$$\frac{d}{dt}(t^3) = 3t^2$$

Find, and write as an equation following the above example,

- (a) the derivative with respect to t of e^t ;
- (b) the derivative with respect to θ of $\cos \theta$;
- (c) the second derivative with respect to z of z^4 .

ANSWERS.

3.
$$6x^5$$
, $\frac{1}{6}x^{-5/6}$, $-\frac{6}{x^7}$, $\sec^2 x$, $-\frac{1}{x^2}$, $\frac{1}{x}$.
4. $\frac{1}{3}x^{-2/3}$, $\frac{5}{4}x^{1/4}$, $3\cdot 14x^{2\cdot 14}$, $-3\cdot 14x^{-4\cdot 14}$, $-\sin x$
5. (a) $-\frac{1}{x^2}$, $\frac{2}{x^3}$.
(b) $\sin x$.
(c) e^x .
6. (a) $\frac{d}{dt}(e^t) = e^t$;
(b) $\frac{d}{d\theta}(\cos \theta) = -\sin \theta$;
(c) $\frac{d^2}{dz^2}(z^4) = 12z^2$.

C