The University of New South Wales School of Mathematics and Statistics

Mathematics Drop-in Centre

ALGEBRAIC IDENTITIES

There are a number of algebraic identities which you need to know in order to help you solve equations and simplify expressions (by an *identity* we mean an equation involving one or more variables, which is true for all values of those variables).

• Addition of fractions:

$$\frac{w}{x} + \frac{y}{z} = \frac{wz + xy}{xz}$$

• Square of a sum:

$$(x+y)^2 = x^2 + 2xy + y^2 \; .$$

• The same for a sum of three terms:

$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$$
.

• Difference of two squares:

$$x^{2} - y^{2} = (x - y)(x + y)$$

• Difference of two powers:

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$$
.

• Sum of two powers: if n is odd then

$$x^{n} + y^{n} = (x + y)(x^{n-1} - x^{n-2}y + \dots - xy^{n-2} + y^{n-1})$$
.

Note that there is no formula like this if n is even: for example, $x^2 + y^2$ cannot be factorised in any simple way.

- The Binomial Theorem to expand $(x+y)^n$: this is dealt with in a separate sheet.
- Power laws and logarithm laws such as $a^x a^y = a^{x+y}$: these are dealt with in separate sheets.

Comments.

- You must be able to use these identities "in both directions". For example, if you see $x^2 y^2$ you should know that it can be factorised, and if you see (x y)(x + y) you should know that it can be expanded and simplified.
- You must be able to replace the variables in all these identities by different variables, constants or expressions. From the "difference of two squares" formula we can find, for example,

$$m^{2} - n^{2} = (m - n)(m + n)$$
$$x^{2} - 5 = (x - \sqrt{5})(x + \sqrt{5})$$
$$9a^{2} - 100b^{2} = (3a - 10b)(3a + 10b)$$
$$x^{6} - y^{6} = (x^{3} - y^{3})(x^{3} + y^{3}) .$$

• Sometimes we can use a number of these identities successively in order to give a detailed factorisation of a certain expression. For instance,

$$x^{6} - y^{6} = (x^{3} - y^{3})(x^{3} + y^{3}) \quad \text{(difference of two squares)}$$
$$= (x - y)(x^{2} + xy + y^{2})(x^{3} + y^{3})$$

(difference of 3rd powers)

$$= (x - y)(x^{2} + xy + y^{2})(x + y)(x^{2} - xy + y^{2})$$

(sum of 3rd powers).

EXERCISES.

Please try to complete the following exercises. Remember that you **cannot** expect to understand mathematics without doing lots of practice! Please do not look at the answers before trying the questions. If you get a question wrong you should go through your working carefully, find the mistake and fix it. If there is a mistake which you cannot find, or a question which you cannot even start, please consult your tutor or the Mathematics Drop-in Centre.

1. Expand

(a)
$$(4x + 5y)(4x - 5y)$$
; (b) $(s + t)^2$;
(c) $(x - 3y + 5z)^2$; (d) $(z^3 - 4)(z^3 + 4)$;
(e) $(ab - 2cd)^2$; (f) $((a + b) - c)((a + b) + c)$;
(g) $(x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4)$;
(h) $(a + b + c + d)^2$ (i) $(x + y)^2 - (x - y)^2$.

2. Factorise

(a)
$$x^{2} + 10xy + 25y^{2}$$
; (b) $x^{6} - y^{4}$;
(c) $x^{8} - y^{8}$; (d) $4a^{2} - 5b^{2}$;
(e) $x^{6} - 2x^{3} + 1$; (f) $z^{7} - 128$ (hint: $128 = 2^{7}$)

- 3. (a) Factorise $x^4 x^2 + 1$ by writing it as $(x^4 + 2x^2 + 1) 3x^2$ and using the above identities.
 - (b) Hence factorise $x^{12} 1$ into linear and quadratic factors.
- 4. The sum and difference of fractions

$$\frac{1}{x-1} - \frac{2}{x^2 - 1} + \frac{1}{x^3 - 1}$$

has a common denominator $(x-1)(x^2-1)(x^3-1)$, but this is not the *smallest* common denominator. By factorising the three denominators, find the smallest common denominator and hence simplify the expression.

ANSWERS.

- 1. (a) $16x^2 25y^2$: (b) $s^2 + 2st + t^2$: (c) $x^2 + 9y^2 + 25z^2 - 6xy + 10xz - 30yz$: (d) $z^6 - 16$: (e) $a^2b^2 - 4abcd + 4c^2d^2$: (f) $a^2 + 2ab + b^2 - c^2$: (g) $x^5 + y^5$: (h) $a^2 + b^2 + c^2 + d^2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd$: (i) 4xy. 2. (a) $(x+5y)^2$: (b) $(x^3 - y^2)(x^3 + y^2)$: (c) $(x^4 - y^4)(x^4 + y^4)$ for a start, but hopefully you can continue and get $(x - y)(x + y)(x^2 + y^2)(x^4 + y^4)$; (d) $(2a - \sqrt{5}b)(2a + \sqrt{5}b)$: (e) $(x^3 - 1)^2$; even better, $(x - 1)^2(x^2 + x + 1)^2$; (f) $(z-2)(z^6+2z^5+4z^4+8z^3+16z^2+32z+64)$. 3. (a) $(x^2 - \sqrt{3}x + 1)(x^2 + \sqrt{3}x + 1)$: (b) $(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)$ $(x^2 - \sqrt{3}x + 1)(x^2 + \sqrt{3}x + 1).$
- 4. The smallest common denominator is $(x-1)(x+1)(x^2+x+1)$ and the expression is

$$\frac{x^3 + x}{(x-1)(x+1)(x^2 + x + 1)} \; .$$