
MATHEMATICS ENRICHMENT CLUB.
Solution Sheet 3, May 27, 2019

1. It is not very elegant, but the quickest way to solve this problem is probably brute force.
That is, write out the first few powers of 2: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048.
We notice that 2048− 32 = 2016. Consequently a = 11 and b = 5, so a + b = 16.

2. Let O be the midpoint of NM , extend the line AB so that it intercepts KN at
the point P ; see below. Since NM and PL are parallel and O is the mid point of
NM , A is the midpoint of PL (this is a special case of the intercept theorem http:

//en.wikipedia.org/wiki/Intercept_theorem). Therefore the triangles PNA and
ANL are congruent to each other, hence ∠PNA = ∠ANL.
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3. We can write n as n = 3a5b7c × N , where the number N has no factors of 3, 5 or 7.
Then 1

3
n = 3a−15b7c ×N , 1

5
n = 3a5b−17c ×N and 1

7
n = 3a5b7c−1 ×N . Because we are

looking minimal N , we may as well set N = 1. So for 1
3
n to be a perfect cube, 1

5
n to

be a perfect fifth power and 1
7

to be a perfect seventh power, we must have a − 1 a
multiple of 3 and a itself a multiple of 5 and 7 (i.e., a multiple of 35). The smallest
the smallest such a is 70. To find n, repeat this argument to obtain b and c.

4. We have
k3 − 1 = (k − 1)(k2 + k + 1) = (k − 1)(k(k + 1) + 1)

and
k3 + 1 = (k + 1)(k2 − k + 1) = (k + 1)(k(k − 1) + 1).

Therefore the numerator of the given product contains the factors 1, 2, 3, . . . , n−1 and
the denominator contains 3, 4, 5, . . . , n + 1. Most of these cancel and we are left with
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2/n(n + 1). The numerator also contains factors 2× 3 + 1, 3× 4 + 1, . . . , n(n + 1) + 1
,and the denominator 1 × 2 + 1, 2 × 3 + 1, . . . , (n1) + 1; again most cancel and there
remains (n(n + 1) + 1)/(1× 2 + 1). Combining all these results gives

23 − 1

23 + 1

33 − 1

33 + 1

43 − 1

43 + 1
· · · n

3 − 1

n3 + 1
=

2

n(n + 1)

n(n + 1) + 1

1× 2 + 1
=

2

3

n2 + n + 1

n2 + n
.

5. Let M1 and M2 be the two mathematicians. We can plot the arrival time of M1 and
M2 on the x− y plane, with x-axis representing the arrival time of M1, and y-axis the
arrival time of M2; see figure ??. Each mathematician stays in the tea room for exactly
m minutes, so we know that if M1 arrives first (say at 9 a.m.) then M2 will run into
M1 in the cafeteria if M2’s arrival time is within m minutes of M1; This is represented
by the m×m square box in the bottom left of the plot. Over the break of 60 minutes,
we get a shaded region as shown in figure ??.

The probability that either mathematician arrives while the other is in the cafeteria is
40%, thus the non-shaded region is 60% of the total area of the big square. So we have

(60−m)2

602
= 0.6

m = 60− 12
√

15,

therefore, a + b + c = 87.
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6. Let f(n) be the number of ways we can choose these n integers. We can try to workout
what f(n + 1) is; that is the number of ways to choose x1, x2, . . . , xn, xn+1 such that
each is 0, 1 or 2 and their sum even.

Suppose we have n integers, x1, . . . xn from the list 0, 1, 2 such that their sum is even.
We know there is f(n) ways to choose these n numbers, and we can either pick xn+1

to be 0 or 2 so that the sum of x1, . . . , xn+1 is even; the total number of ways we can
pick these n + 1 integers is 2f(n).

On the other hand, if the initial n integers, x1, . . . xn from the list 0, 1, 2 is odd, then
there is 3n − f(n) ways to choose these n numbers, and we can only pick xn+1 = 1 so
that the sum of x1, . . . xn+1 is even; the total number of ways we can pick these n + 1
integers is 3n − f(f)

Combining both cases, we have the recursive relation f(n+ 1) = 3n + f(n). Since it is
straightforward to workout f(1) = 2, we can find f(n).

2



Senior Questions

1. Given that a, b, and c are positive integers, solve

(a) If a > b, then dividing both sides by a!, we have

b! =
b!

a!
+ 1,

the LHS of the above equation is an integer, while the RHS is not; we have a
contradiction on the condition a > b. We can apply the same arguments to get
a ≮ b, so that a = b. The only solution is then a = b = 2.

(b) Notice this equation is symmetric in a and b, so we can assume without loss of
generality a ≥ b. Dividing through by b!, then

a! =
a!

b!
+ 1 +

2c

b!
. (1)

The LHS of equation (1) is an integer and a!/b! is an integer, therefore 2c/b! must
be an integer, this implies b is either 1 or 2. Also, the RHS of (1) is the sum of 3
integers, so a! must contain a factor of 3; a ≥ 3.

If b = 1 then a! = a! + 1 + 2c, which implies 2c + 1 = 0; there is no solution for c,
so b 6= 1. Therefore b = 2.

If a > 3, then a!/2 is even, so 2c−1 = 1. But then we get a!/2 = 2, which has no
solution for a.

Therefore, we conclude that a = 3 and b = 2, therefore c = 2.

(c)

2. (a) The inequality holds for n = 3. Assume n! > (n − 2)(1! + 2! + . . . (n−)1!) and
note that 2(n− 2) ≥ n− 1 for n ≥ 3, therefore

(n + 1)! = (n− 1)n! + 2n!

> (n− 1)n! + 2(n− 2)(1! + 2! + . . . (n− 1)!)

≥ (n− 1)(1! + 2! + . . . + n!),

so the inequality holds for all n by standard induction arguments.

(b) (n + 1)! < n(1! + 2! + . . . + n!) because

(n + 1)! = (n + 1)n!

= nn! + n!

= n(n! + (n− 1)!)

< n(1! + 2! + . . . + n!).

Therefore, combining with the result of (a),

n <
(n + 1)!

1! + 2! + . . . + n!
< n + 1.

So (n + 1)! divided by 1! + 2! + . . . n! is a number that is strictly between n and
n + 1; 1! + 2! + . . . n! does not divide (n + 1)!.
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