
MATHEMATICS ENRICHMENT CLUB.
Problem Sheet 13 Solutions, September 3, 2019

1. We can write

y = 1000× x+ x

= 1001x

Also, y = kx2 for some integer k. Thus

1001x = kx2

Since x 6= 0, we may divide both sides by x to obtain

kx = 1001

= 7× 143

Since x is a three-digit number, x = 143 and y = 143143.

2. If we calculate the fifth powers in mod 10, we see that 15 ≡ 1 (mod 10), 25 ≡ 2
(mod 10), 35 ≡ 3 (mod 10), and so on. That is, the last digit of x5 will be the same
as the last digit of x. Therefore, the last digit of 15 + 25 + . . . + 20195 is equal to the
last digit of 1 + 2 + . . . 2019, which is 0.

3. Let O be the centre of the big semi-circle; A be the centre of one of the smaller semi-
circles, and B be the centre of the inscribed circle.
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Clearly, OA = R. Now AB is a straight line through the point of tangency of the circle
and the semi-circle, so AB = R + r. Since the two smaller semi-circles are congruent,
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and the circle is tangent to both of them, B lies on the vertical axis of symmetry of
the larger semi-circle. Thus OB = 2R− r.
Thus, by Pythagoras’ theorem,

(R + r)2 = (2R− r)2 +R2

R2 + 2rR + r2 = 4R2 − 4rR +R2 +R2

6rR = 4R2

3r = 2R

Hence R : r = 3 : 2, as required.

4. Suppose we can place the numbers on a circle so that the condition holds. Let us call
the integers from 26 to 75 normal, and all the others extreme. Two extreme integers
cannot be consecutive (their difference is either less than 25 or greater than 50). Note
that the numbers of the extreme and normal integers are the same and therefore they
must alternate. However the normal number 26 can be adjacent to only one extreme
integer 76, which is a contradiction.

5. Let a = 10b, then we can rewrite the inequality 10 < ax < 100 as 1 < bx < 2. Similarly,
if 100 < ax < 1000, then 2 < bx < 3. Suppose n is the smallest integral solution to the
inequality, then since there are exactly 5 solutions, the largest solution must be n+ 4.
From this we can deduce b(n− 1) < 1 < bn and b(n+ 4) < 2 < b(n+ 5). Summing up
the first inequality with itself and with the second one we obtain b(2n−2) < 2 < b(2n)
and b(2n + 3) < 3 < b(2n + 5). Therefore, the inequality 2 < bx < 3 has from 4 to 6
integer solutions; 2n, 2n + 1 . . . , 2n + 4 are always solutions, while 2n − 1 and 2n + 4
may or may not be.

So if we want to get a only four solutions, then we need to consider a number b such
that b(2n− 2) < 2 and 3 < b(2n+ 5) for some integer n. An easy way to do this is set
n = 5, then 1

5
< b < 1

4
. The solutions for the first inequality is 5, 6, 7, 8 and the second

10, 11, 12, 13.

We can get 5 or 6 solutions by picking the appropriate b.

Senior Questions

1. Without loss of generality, we can inscribe the regular heptagon in a circle centered at
O with diameter 1 unit. Let H be the point on the circle opposite A, so that AOH is
a diameter of the circle. Then AH is one unit.
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Now, consider 4ABH. As AH is a diameter of the circle, ∠HBA = π
2
. Furthermore,

since ACDEFG is a regular heptagon, ∠AOB = 2π
7

, which implies that ∠BHA = π
7
.

Thus AB = sin π
7
. By a similar argument, we can show that AC = sin 2π

7
and AD =

sin 3π
7

. Thus if we can show that

csc
π

7
= csc

2π

7
+ csc

3π

7
,

then the desired result is proved.

So

csc
2π

7
+ csc

3π

7
=

1

sin 2π
7

+
1

sin 3π
7

=
sin 2π

7
+ sin 3π

7

sin 2π
7

sin 3π
7

=
sin 2π

7
+ sin 3π

7

2 sin π
7

cos π
7

sin 3π
7

Now we can make use of the fact that sin 3π
7

= sin
(
π − 3π

7

)
= sin 4π

7
and the incredibly

useful products-to-sums trig identity

2 sinA cosB = sin(A−B) + sin(A+B),

to show that

sin 2π
7

+ sin 3π
7

2 sin π
7

cos π
7

sin 3π
7

=
sin 2π

7
+ sin 4π

7

sin π
7
(sin 2π

7
+ sin 4π

7
)

=
1

sin π
7

,

as required.

2. Notice that we have the greatest control over the number p1, so we want to find out
what p1 is allow to be. Suppose p1 > 3, then p1, . . . p17 can not contain factors of 3.
Therefore, pi = 1 (mod 3) or pi = 2 (mod 3) for i = 1, 2, . . . , 17; that is p1, . . . , p17
must have remainder 1 or 2 when divided by 3. From this, we have p2i = 1 (mod 3)
for each i = 1, . . . 17, and so p21 + p22 + . . . + p217 = 2 (mod 3). On the other hand, the
square of an integer must have remainder 0 or 1 when it is divided by 3 (e.g consider
remainders of the square of an even or odd number when divided by 3). Therefore,
p21 + . . .+ p217 is not a square, so we have shown that p1 ≤ 3.

If p1 = 2, then p217 − p216 is an even number so it is divisible by p1 = 2. If p1 = 3, then
as before p16 ≡ p17 = 1 (mod 3). Thus, p217 − p216 = 0 (mod 3) which concludes the
proof.

3. We consider the general case of n knights, k1, k2, . . . kn, where n ≥ 3. Let s1, s2, . . . , sn
be the initial seats where k1, k2, . . . , kn sits in order, and let a = bn/2c be the greatest
integer less than or equal to n/2. We split the knights into the two groups K1 =
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{k1, k2, . . . , ka} and K2{ka+1, ka+2, . . . , kn}, then we can change the anti-clockwise or-
dering of the seated knights into an clockwise ordering, by reversing the order of the
knights in the set K1 and K2. To move k1 to sa, k1 must swap position with k2 then k3
and so on. It takes (a− 1) swaps to move k1 to the seat sa. Similarly, it takes (a− 2)
swaps to move k2 into sa−1, (a− 3) swaps to move k3 to sa−2 and so on. Therefore, it
takes 1 + 2 + . . .+ (a− 1) swaps to reverse the order of the set K1. Similarly, it takes
1 + 2 + . . . + (n − a − 1) swaps to reverse the order of the set K2. In summary, then
number of swaps required is

[1 + 2 + . . .+ (a− 1)] + [1 + 2 + . . .+ (n− a− 1)] =
n−1∑
r=2

⌊r
2

⌋
Therefore, if n = 12 then the number of swaps required is 30, and if n = 13 then the
number of swaps required is 36. All is left to do is to show that the number a we picked
initially does indeed produce the minimum number of required swaps.
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