Julia: Functions, Modules, Projects and Packages

Bill McLean

School Colloquium
January, 2022

Functions

Consider a simple Julia function

f(x,y) = 2x +y.

> If | call f with integer arguments, Julia compiles and runs a
version of this function that works when x and y are integers,
and returns an integer result.

» The compiled code is cached so it can be re-used as many
times as needed.

Functions

Consider a simple Julia function

f(x,y) = 2x +y.

> If | call f with integer arguments, Julia compiles and runs a
version of this function that works when x and y are integers,
and returns an integer result.

» The compiled code is cached so it can be re-used as many
times as needed.

» If | then call f with floating-point arguments, Julia compiles
and runs a different version that works when x and y are
floating-point numbers, and returns a floating-point result.

Functions

Consider a simple Julia function

f(x,y) = 2x +y.

> If | call f with integer arguments, Julia compiles and runs a
version of this function that works when x and y are integers,
and returns an integer result.

» The compiled code is cached so it can be re-used as many
times as needed.

» If | then call f with floating-point arguments, Julia compiles
and runs a different version that works when x and y are
floating-point numbers, and returns a floating-point result.

» So the calls f(1,2), f(1.0,2.0), f(1.0,2) and f(1,2.0) all use
different compiled versions of f.

Compilation

» Julia relies on the LLVM compiler framework (like Clang).

Compilation

» Julia relies on the LLVM compiler framework (like Clang).

» You can look at the assembler generated by Julia using the
code_native function or the associated @code_native macro.

» E.g., try code_native(f, (Int64, Int64)) or @code_native f(2, 3).

Compilation

>
>

v

Julia relies on the LLVM compiler framework (like Clang).

You can look at the assembler generated by Julia using the
code_native function or the associated @code_native macro.

E.g., try code_native(f, (Int64, Int64)) or @code_native f(2, 3).
Similarly, code_llvm shows LLVM intermediate representation.

Unlike a normal compiler, the compiled code is not available
to the user as an object file.

Thus, if you restart Julia then your function has to be
recompiled.

Compilation

>
>

v

Julia relies on the LLVM compiler framework (like Clang).

You can look at the assembler generated by Julia using the
code_native function or the associated @code_native macro.
E.g., try code_native(f, (Int64, Int64)) or @code_native f(2, 3).
Similarly, code_llvm shows LLVM intermediate representation.
Unlike a normal compiler, the compiled code is not available
to the user as an object file.

Thus, if you restart Julia then your function has to be
recompiled.

For large projects, functions should be organised into modules.
These can be precompiled and stored in $SHOME/ julia.

Julia relies on type inference. Any type instability can harm
performance (code_warntype). Read the “Performance Tips"
in the manual.

Methods

» Julia functions are generic. A given f can have multiple
definitions, called methods. E.g., consider methods(eigen).

> Multiple dispatch refers to the system Julia uses to select the
appropriate method for a given function call.

Methods

» Julia functions are generic. A given f can have multiple
definitions, called methods. E.g., consider methods(eigen).

> Multiple dispatch refers to the system Julia uses to select the
appropriate method for a given function call.

» Our fis an example of a generic function with 1 method. Julia
will accept x and y of any type such that the expression 2x+y
makes sense. E.g., x and y could be matrices of the same size.

» Julia does a good job of finding the most specific method for
a given function call.

Methods

>

>

Julia functions are generic. A given f can have multiple
definitions, called methods. E.g., consider methods(eigen).

Multiple dispatch refers to the system Julia uses to select the
appropriate method for a given function call.

Our f is an example of a generic function with 1 method. Julia
will accept x and y of any type such that the expression 2x+y
makes sense. E.g., x and y could be matrices of the same size.

Julia does a good job of finding the most specific method for
a given function call.

Even if a function has only 1 method, type assertions can be
useful for constraining the allowed types.
function custom_gauss_rule(lo::T, hi::T,
a::Vector{T}, b::Vector{T}
) where {T<:AbstractFloat}

Modules

» Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

Modules

» Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

Modules

» Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

» A Julia module cannot have an entry point.

» Each module provides a restricted name space and Julia
provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively

import CSV: read as readcsv

Modules

» Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

» A Julia module cannot have an entry point.

» Each module provides a restricted name space and Julia
provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively
import CSV: read as readcsv

» The built-in variable LOAD_PATH (or the environment
variable JULIA_LOAD_PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

Modules

» Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

» A Julia module cannot have an entry point.

» Each module provides a restricted name space and Julia
provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively

import CSV: read as readcsv

» The built-in variable LOAD_PATH (or the environment
variable JULIA_LOAD_PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

> The Revise package is useful when developing modules.

» Organise large modules into submodules.

Projects

» Typically organise a project into directories src/, test/, docs/,
scripts/, etc.

» The pkg command generate is helpful when starting a new
project.

Projects

» Typically organise a project into directories src/, test/, docs/,
scripts/, etc.

» The pkg command generate is helpful when starting a new
project.

» The module in src/ directory holds functions that can be used
in multiple scripts.

» Typically host code on github.

» The Test package provides support for unit testing (with an
automated build status on github).

Projects

» Typically organise a project into directories src/, test/, docs/,
scripts/, etc.

» The pkg command generate is helpful when starting a new
project.

» The module in src/ directory holds functions that can be used
in multiple scripts.

» Typically host code on github.

» The Test package provides support for unit testing (with an
automated build status on github).

» Ideal way to share code associated with a paper.

Packages

> A package is just a project intended for use in other projects.
It has to conform strictly to the recommended practices for
projects.

» If hosted online, it can be installed by the pkg command add
url.

> If a package is registered, then just do add package name
instead.

» Registered packages can be downloaded from the nearest
mirror site. This infrastructure is funded by Julia Computing.

Packages

> A package is just a project intended for use in other projects.
It has to conform strictly to the recommended practices for
projects.

» If hosted online, it can be installed by the pkg command add
url.

> If a package is registered, then just do add package name
instead.

» Registered packages can be downloaded from the nearest
mirror site. This infrastructure is funded by Julia Computing.

» Programming language adoption often driven by available
packages as much as (or more than) features.

» No modern language could be competitive without a package
manager.

Dependency Hell

» Any non-trivial project depends on some modules external to
the project.

» More challenging projects often rely on modules from
third-party packages.

Dependency Hell

» Any non-trivial project depends on some modules external to
the project.

» More challenging projects often rely on modules from
third-party packages.

» What if | want to run (or modify) code | wrote several years
ago?

> Good news: Julia itself (including its standard library) is
backwards compatible to version 1.0. You can also install
multiple Julia versions on the same computer without
problems.

> Bad news: third-party packages are another matter (especially
the cutting-edge ones under rapid development).

Dependency Hell

» Any non-trivial project depends on some modules external to
the project.

» More challenging projects often rely on modules from
third-party packages.
» What if | want to run (or modify) code | wrote several years
ago?
> Good news: Julia itself (including its standard library) is
backwards compatible to version 1.0. You can also install
multiple Julia versions on the same computer without
problems.
> Bad news: third-party packages are another matter (especially
the cutting-edge ones under rapid development).

» | want to use PkgA and PkgB, both depending on PkgC.

What if PkgA works only with an old version of PkgC, but
PkgB works only with a new version?

Environments

» Julia's package management system supports the use of
project environments.

» Similar to virtual environments in Python.

Environments

» Julia's package management system supports the use of
project environments.

» Similar to virtual environments in Python.
> Workflow uses pkg commands activate and add.

» File Project.toml keeps a list of all direct dependencies and
their versions.

» File Manifest.toml holds exhaustive data on all dependencies,
both direct and indirect.

Environments

» Julia's package management system supports the use of
project environments.

» Similar to virtual environments in Python.
> Workflow uses pkg commands activate and add.

» File Project.toml keeps a list of all direct dependencies and
their versions.

» File Manifest.toml holds exhaustive data on all dependencies,
both direct and indirect.
» The pkg command instantiate will download and precompile

all dependencies for the current project, for the specific
versions recorded in the manifest file.

Environments

» Julia's package management system supports the use of
project environments.

» Similar to virtual environments in Python.
> Workflow uses pkg commands activate and add.

» File Project.toml keeps a list of all direct dependencies and
their versions.

» File Manifest.toml holds exhaustive data on all dependencies,
both direct and indirect.

» The pkg command instantiate will download and precompile
all dependencies for the current project, for the specific
versions recorded in the manifest file.

» Facilitates reproducible research.

