
Julia: Functions, Modules, Projects and Packages

Bill McLean

School Colloquium
January, 2022

Functions

Consider a simple Julia function

f(x, y) = 2x + y.

I If I call f with integer arguments, Julia compiles and runs a
version of this function that works when x and y are integers,
and returns an integer result.

I The compiled code is cached so it can be re-used as many
times as needed.

I If I then call f with floating-point arguments, Julia compiles
and runs a different version that works when x and y are
floating-point numbers, and returns a floating-point result.

I So the calls f(1,2), f(1.0,2.0), f(1.0,2) and f(1,2.0) all use
different compiled versions of f.

Functions

Consider a simple Julia function

f(x, y) = 2x + y.

I If I call f with integer arguments, Julia compiles and runs a
version of this function that works when x and y are integers,
and returns an integer result.

I The compiled code is cached so it can be re-used as many
times as needed.

I If I then call f with floating-point arguments, Julia compiles
and runs a different version that works when x and y are
floating-point numbers, and returns a floating-point result.

I So the calls f(1,2), f(1.0,2.0), f(1.0,2) and f(1,2.0) all use
different compiled versions of f.

Functions

Consider a simple Julia function

f(x, y) = 2x + y.

I If I call f with integer arguments, Julia compiles and runs a
version of this function that works when x and y are integers,
and returns an integer result.

I The compiled code is cached so it can be re-used as many
times as needed.

I If I then call f with floating-point arguments, Julia compiles
and runs a different version that works when x and y are
floating-point numbers, and returns a floating-point result.

I So the calls f(1,2), f(1.0,2.0), f(1.0,2) and f(1,2.0) all use
different compiled versions of f.

Compilation

I Julia relies on the LLVM compiler framework (like Clang).

I You can look at the assembler generated by Julia using the
code native function or the associated @code native macro.

I E.g., try code native(f, (Int64, Int64)) or @code native f(2, 3).
I Similarly, code llvm shows LLVM intermediate representation.
I Unlike a normal compiler, the compiled code is not available

to the user as an object file.
I Thus, if you restart Julia then your function has to be

recompiled.
I For large projects, functions should be organised into modules.

These can be precompiled and stored in $HOME/.julia.
I Julia relies on type inference. Any type instability can harm

performance (code warntype). Read the “Performance Tips”
in the manual.

Compilation

I Julia relies on the LLVM compiler framework (like Clang).
I You can look at the assembler generated by Julia using the

code native function or the associated @code native macro.
I E.g., try code native(f, (Int64, Int64)) or @code native f(2, 3).

I Similarly, code llvm shows LLVM intermediate representation.
I Unlike a normal compiler, the compiled code is not available

to the user as an object file.
I Thus, if you restart Julia then your function has to be

recompiled.
I For large projects, functions should be organised into modules.

These can be precompiled and stored in $HOME/.julia.
I Julia relies on type inference. Any type instability can harm

performance (code warntype). Read the “Performance Tips”
in the manual.

Compilation

I Julia relies on the LLVM compiler framework (like Clang).
I You can look at the assembler generated by Julia using the

code native function or the associated @code native macro.
I E.g., try code native(f, (Int64, Int64)) or @code native f(2, 3).
I Similarly, code llvm shows LLVM intermediate representation.
I Unlike a normal compiler, the compiled code is not available

to the user as an object file.
I Thus, if you restart Julia then your function has to be

recompiled.

I For large projects, functions should be organised into modules.
These can be precompiled and stored in $HOME/.julia.

I Julia relies on type inference. Any type instability can harm
performance (code warntype). Read the “Performance Tips”
in the manual.

Compilation

I Julia relies on the LLVM compiler framework (like Clang).
I You can look at the assembler generated by Julia using the

code native function or the associated @code native macro.
I E.g., try code native(f, (Int64, Int64)) or @code native f(2, 3).
I Similarly, code llvm shows LLVM intermediate representation.
I Unlike a normal compiler, the compiled code is not available

to the user as an object file.
I Thus, if you restart Julia then your function has to be

recompiled.
I For large projects, functions should be organised into modules.

These can be precompiled and stored in $HOME/.julia.
I Julia relies on type inference. Any type instability can harm

performance (code warntype). Read the “Performance Tips”
in the manual.

Methods

I Julia functions are generic. A given f can have multiple
definitions, called methods. E.g., consider methods(eigen).

I Multiple dispatch refers to the system Julia uses to select the
appropriate method for a given function call.

I Our f is an example of a generic function with 1 method. Julia
will accept x and y of any type such that the expression 2x+y
makes sense. E.g., x and y could be matrices of the same size.

I Julia does a good job of finding the most specific method for
a given function call.

I Even if a function has only 1 method, type assertions can be
useful for constraining the allowed types.
function custom_gauss_rule(lo::T, hi::T,

a::Vector{T}, b::Vector{T}
) where {T<:AbstractFloat}

Methods

I Julia functions are generic. A given f can have multiple
definitions, called methods. E.g., consider methods(eigen).

I Multiple dispatch refers to the system Julia uses to select the
appropriate method for a given function call.

I Our f is an example of a generic function with 1 method. Julia
will accept x and y of any type such that the expression 2x+y
makes sense. E.g., x and y could be matrices of the same size.

I Julia does a good job of finding the most specific method for
a given function call.

I Even if a function has only 1 method, type assertions can be
useful for constraining the allowed types.
function custom_gauss_rule(lo::T, hi::T,

a::Vector{T}, b::Vector{T}
) where {T<:AbstractFloat}

Methods

I Julia functions are generic. A given f can have multiple
definitions, called methods. E.g., consider methods(eigen).

I Multiple dispatch refers to the system Julia uses to select the
appropriate method for a given function call.

I Our f is an example of a generic function with 1 method. Julia
will accept x and y of any type such that the expression 2x+y
makes sense. E.g., x and y could be matrices of the same size.

I Julia does a good job of finding the most specific method for
a given function call.

I Even if a function has only 1 method, type assertions can be
useful for constraining the allowed types.
function custom_gauss_rule(lo::T, hi::T,

a::Vector{T}, b::Vector{T}
) where {T<:AbstractFloat}

Modules

I Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

I A Julia module cannot have an entry point.
I Each module provides a restricted name space and Julia

provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively
import CSV: read as readcsv

I The built-in variable LOAD PATH (or the environment
variable JULIA LOAD PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

I The Revise package is useful when developing modules.
I Organise large modules into submodules.

Modules

I Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

I A Julia module cannot have an entry point.
I Each module provides a restricted name space and Julia

provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively
import CSV: read as readcsv

I The built-in variable LOAD PATH (or the environment
variable JULIA LOAD PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

I The Revise package is useful when developing modules.
I Organise large modules into submodules.

Modules

I Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

I A Julia module cannot have an entry point.
I Each module provides a restricted name space and Julia

provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively
import CSV: read as readcsv

I The built-in variable LOAD PATH (or the environment
variable JULIA LOAD PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

I The Revise package is useful when developing modules.
I Organise large modules into submodules.

Modules

I Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

I A Julia module cannot have an entry point.
I Each module provides a restricted name space and Julia

provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively
import CSV: read as readcsv

I The built-in variable LOAD PATH (or the environment
variable JULIA LOAD PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

I The Revise package is useful when developing modules.
I Organise large modules into submodules.

Modules

I Modules are a convenient mechanism for grouping related
type definitions and functions in a way that makes them
usable by any program.

I A Julia module cannot have an entry point.
I Each module provides a restricted name space and Julia

provides disambiguation mechanisms to sort out name clashes.
E.g., CSV.read or alternatively
import CSV: read as readcsv

I The built-in variable LOAD PATH (or the environment
variable JULIA LOAD PATH) tells Julia which directories to
search for modules. Alternatively, use a project environment
(see below).

I The Revise package is useful when developing modules.
I Organise large modules into submodules.

Projects

I Typically organise a project into directories src/, test/, docs/,
scripts/, etc.

I The pkg command generate is helpful when starting a new
project.

I The module in src/ directory holds functions that can be used
in multiple scripts.

I Typically host code on github.
I The Test package provides support for unit testing (with an

automated build status on github).
I Ideal way to share code associated with a paper.

Projects

I Typically organise a project into directories src/, test/, docs/,
scripts/, etc.

I The pkg command generate is helpful when starting a new
project.

I The module in src/ directory holds functions that can be used
in multiple scripts.

I Typically host code on github.
I The Test package provides support for unit testing (with an

automated build status on github).

I Ideal way to share code associated with a paper.

Projects

I Typically organise a project into directories src/, test/, docs/,
scripts/, etc.

I The pkg command generate is helpful when starting a new
project.

I The module in src/ directory holds functions that can be used
in multiple scripts.

I Typically host code on github.
I The Test package provides support for unit testing (with an

automated build status on github).
I Ideal way to share code associated with a paper.

Packages

I A package is just a project intended for use in other projects.
It has to conform strictly to the recommended practices for
projects.

I If hosted online, it can be installed by the pkg command add
url.

I If a package is registered, then just do add package name
instead.

I Registered packages can be downloaded from the nearest
mirror site. This infrastructure is funded by Julia Computing.

I Programming language adoption often driven by available
packages as much as (or more than) features.

I No modern language could be competitive without a package
manager.

Packages

I A package is just a project intended for use in other projects.
It has to conform strictly to the recommended practices for
projects.

I If hosted online, it can be installed by the pkg command add
url.

I If a package is registered, then just do add package name
instead.

I Registered packages can be downloaded from the nearest
mirror site. This infrastructure is funded by Julia Computing.

I Programming language adoption often driven by available
packages as much as (or more than) features.

I No modern language could be competitive without a package
manager.

Dependency Hell

I Any non-trivial project depends on some modules external to
the project.

I More challenging projects often rely on modules from
third-party packages.

I What if I want to run (or modify) code I wrote several years
ago?

I Good news: Julia itself (including its standard library) is
backwards compatible to version 1.0. You can also install
multiple Julia versions on the same computer without
problems.

I Bad news: third-party packages are another matter (especially
the cutting-edge ones under rapid development).

I I want to use PkgA and PkgB, both depending on PkgC.
What if PkgA works only with an old version of PkgC, but
PkgB works only with a new version?

Dependency Hell

I Any non-trivial project depends on some modules external to
the project.

I More challenging projects often rely on modules from
third-party packages.

I What if I want to run (or modify) code I wrote several years
ago?
I Good news: Julia itself (including its standard library) is

backwards compatible to version 1.0. You can also install
multiple Julia versions on the same computer without
problems.

I Bad news: third-party packages are another matter (especially
the cutting-edge ones under rapid development).

I I want to use PkgA and PkgB, both depending on PkgC.
What if PkgA works only with an old version of PkgC, but
PkgB works only with a new version?

Dependency Hell

I Any non-trivial project depends on some modules external to
the project.

I More challenging projects often rely on modules from
third-party packages.

I What if I want to run (or modify) code I wrote several years
ago?
I Good news: Julia itself (including its standard library) is

backwards compatible to version 1.0. You can also install
multiple Julia versions on the same computer without
problems.

I Bad news: third-party packages are another matter (especially
the cutting-edge ones under rapid development).

I I want to use PkgA and PkgB, both depending on PkgC.
What if PkgA works only with an old version of PkgC, but
PkgB works only with a new version?

Environments

I Julia’s package management system supports the use of
project environments.

I Similar to virtual environments in Python.

I Workflow uses pkg commands activate and add.
I File Project.toml keeps a list of all direct dependencies and

their versions.
I File Manifest.toml holds exhaustive data on all dependencies,

both direct and indirect.
I The pkg command instantiate will download and precompile

all dependencies for the current project, for the specific
versions recorded in the manifest file.

I Facilitates reproducible research.

Environments

I Julia’s package management system supports the use of
project environments.

I Similar to virtual environments in Python.
I Workflow uses pkg commands activate and add.
I File Project.toml keeps a list of all direct dependencies and

their versions.
I File Manifest.toml holds exhaustive data on all dependencies,

both direct and indirect.

I The pkg command instantiate will download and precompile
all dependencies for the current project, for the specific
versions recorded in the manifest file.

I Facilitates reproducible research.

Environments

I Julia’s package management system supports the use of
project environments.

I Similar to virtual environments in Python.
I Workflow uses pkg commands activate and add.
I File Project.toml keeps a list of all direct dependencies and

their versions.
I File Manifest.toml holds exhaustive data on all dependencies,

both direct and indirect.
I The pkg command instantiate will download and precompile

all dependencies for the current project, for the specific
versions recorded in the manifest file.

I Facilitates reproducible research.

Environments

I Julia’s package management system supports the use of
project environments.

I Similar to virtual environments in Python.
I Workflow uses pkg commands activate and add.
I File Project.toml keeps a list of all direct dependencies and

their versions.
I File Manifest.toml holds exhaustive data on all dependencies,

both direct and indirect.
I The pkg command instantiate will download and precompile

all dependencies for the current project, for the specific
versions recorded in the manifest file.

I Facilitates reproducible research.

