
FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS
AND STATISTICS

INTRODUCTION TO MATLAB

2019

These notes are copyright c© 2019, the School of Mathematics and Statistics, UNSW
Australia. Cricos Provider Code 00098G

Maple is a registered trademark of Waterloo Maple Inc.

Matlab is a registered trademark of The MathWorks Inc.

Microsoft Windows is a registered trademark of the Microsoft Corporation.

Google is a registered trademark of Google Inc.

The information in these notes is correct at the time of printing. Any changes will be
announced through the course Web page where an updated version of these notes may
be placed if necessary.

Contents

1 What is MATLAB 2
1.1 What is Matlab? . 2
1.2 The Matlab Window . 3
1.3 Preparing Matlab script Files . 4

1.3.1 Using the Matlab Editor . 4
1.4 Online self-paced lessons for Matlab . 6
1.5 The Matlab interface . 7

1.5.1 Help facilities . 7

2 MATLAB COMMANDS 9
2.1 Basics . 9

2.1.1 Arithmetic . 9
2.1.2 Assigning variables . 9
2.1.3 Variable Names . 10
2.1.4 Controlling Output . 10
2.1.5 clear . 11
2.1.6 Number Formats . 11
2.1.7 Complex numbers . 11

2.2 Saving Sessions, Input and Output . 12
2.2.1 Data Input and Output . 12
2.2.2 Recording your Session . 12

2.3 Built-in Functions . 13
2.4 Basic Vectors . 13

2.4.1 Row and Column vectors . 14
2.4.2 Vector arithmetic . 14
2.4.3 Colon and linspace . 15

2.5 Plotting . 15
2.5.1 plot command . 15
2.5.2 ezplot . 16
2.5.3 Style options . 16
2.5.4 Titles, axes and grids . 17
2.5.5 Specialised plot procedures . 17

2.6 M-files and New Functions . 17
2.6.1 Function Files . 18
2.6.2 Anonymous Functions . 19

2.7 Further Vectors . 20
2.7.1 Ordinary Product . 20

ii

CONTENTS 1

2.7.2 Array Arithmetic . 20
2.7.3 More on plotting . 21

2.8 Matrices and Linear Equations . 21
2.8.1 Definitions . 21
2.8.2 Special matrices . 22
2.8.3 Standard Matrix Arithmetic . 23
2.8.4 Matrix array arithmetic . 23
2.8.5 Systems of Linear Equations . 23

2.9 Calculus . 24
2.10 Programming Considerations . 24

2.10.1 Logicals . 24
2.10.2 If Statements . 25
2.10.3 Loops . 26
2.10.4 Other Control Structures . 27

Chapter 1
What is MATLAB

1.1 What is Matlab?
The Matlab documentation describes Matlab as a high-performance language for

technical computing, integrating computation, visualisation, and programming in an easy-
to-use environment where problems and solutions are expressed in familiar mathematical
notation. Typical uses include

• Mathematics and computation;

• Algorithm development;

• Data acquisition;

• Modelling, simulation, and prototyping;

• Data analysis, exploration, and visualisation;

• Scientific, engineering and financial graphics;

• Application development, including graphical user interface building;

Matlab is used for across a wide range of application areas covering science, engineering
and business/finance.

Matlab is an interactive system whose basic data element is an array that does
not require dimensioning. This allows you to solve many technical computing problems,
especially those with matrix and vector formulations, in a fraction of the time it would
take to write a program in a scalar non-interactive language such as C or Fortran.

MAPLE, which is used in the standard first year mathematics courses, is an environ-
ment for doing mathematics. The basic object in MAPLE is an expression, which can be
symbolically manipulated (for example integrated or differentiated). In contrast Matlab
is primarily a package for numerical computations whose basic object is a array. Both
packages have integrated facilities for two and three dimensional visualisation and anima-
tion, tools which are essential for displaying and interpreting the results of mathematical
models.

There are several versions of Matlab. This chapter tells you how to use the version
which is available in the School of Mathematics and Statistics’ computer laboratories
located on the ground floor and mezzanine level of the Red Centre. Matlab is available
on both the Linux and Windows computers in these laboratories. You may find other
versions on computers elsewhere in the university and there is a student version [2] which
you can buy from the UNSW Bookshop and run on your home computer. If you are
UNSW students, you can download a free version of Matlab from UNSW IT website

https://www.it.unsw.edu.au/students/software/matlab.html.

2

https://www.it.unsw.edu.au/students/software/matlab.html

1.2. The Matlab Window 3

You can also run Matlab on a mobile device using UNSW MyAccess service from
https://aaa-access.unsw.edu.au/vpn/index.html.
Further information about Matlab is contained in chapter 2, will be given in lectures,

or will be in the reference books [4, 1]. The book [3] by Cleve Moler, one of the creators
of Matlab is available online, has an introduction to Matlab and also to numerical
methods. Matlab has an extensive online help system.

In this chapter we will concentrate on the features of Matlab common to both Linux
and Windows and also on how to create the files needed for your course.

1.2 The Matlab Window
To start a Matlab session (i.e. open a Matlab window), click on the Matlab

Application Icon:

Figure 1.1: Matlab icon

After some time, a Matlab window, similar to that shown in figure 1.2, will appear.

Figure 1.2: Initial Matlab windows

Figure 1.2 shows the Matlab windows when you start Matlab for the first time.
This window contains a tabbed set of menus across the top and a Search Documentation

box in the top right hand corner. Most of the time you will be using the HOME tab.
Immediately below the menu tab is a list of the folders you are in, ending in Matlab’s

https://aaa-access.unsw.edu.au/vpn/index.html

4 CHAPTER 1. WHAT IS MATLAB

current folder. It is good practice to create folders for your different courses, all under
your UNSW home drive (not on the local computer) so you can access them from any
computer.

The first time you start Matlab the main window will be split into several sub-
windows, including the Current Folder, Command Window, Workspace and Command History.

• The Current Folder sub-window lists all the files in the the current folder.

• The Command Window is where you type commands and see the results of commands
that Matlab has executed. The Command Window has the Matlab prompt >>,
indicating Matlab is waiting for you to enter a command.

• The Workspace sub-window lists the variables you have created and some of their
properties.

• The Command History sub-window lists the commands you have used recently, en-
abling you to easily go back to a previous command.

After you have become familiar with Matlab, all but the main Command window may be
closed. This depends on what you find to be the most efficient way to work. You may
also like to change the height and width of this window as well.

Note: Throughout this chapter (unless otherwise stated) we will use ‘click’ to mean ‘click
the left mouse button’.

When you want to terminate a Matlab session (i.e. close a Matlab window), either
simply type quit at the Matlab prompt, or click the close button (small circle with
a x) in the top right hand corner. When you quit Matlab your configuration is saved.
The next time you start Matlab, your saved configuration will be used.

1.3 Preparing Matlab script Files
You will prepare script files and function files during laboratory classes. These are

both often called M-files, as they all have the file extension .m (lower case). A script
file contains commands to carry out specified tasks; a function file defines a Matlab
function. These files are discussed in more detail in section 2.6, and will be covered in
lectures. Both types of file should also contain comments — these could give the purpose
of the M-file, how to use a function M-file or particular features of your code.

NOTE that a Matlab M-file is a text file which contains nothing except a list of
Matlab commands (with no prompts) and comments (which start with a %).

You should first read the relevant parts of the lecture notes, these notes, any reference
book and work out a suitable sequence of commands. Then you should try them out on
the computer and modify them if they do not work. Finally you save the script file for
later reference.

1.3.1 Using the Matlab Editor
An editor is a piece of software used for editing files (also known as word-processing).

Since M-files are text files, any editor can be used.
However, Matlab has its own built in editor which has the advantage of being purpose

built for creating script and function files. Among its features, the Matlab editor has

• Syntax highlighting: for example, comments (green) and strings (purple) appear
in different colours to commands.

1.3. Preparing Matlab script Files 5

• Program layout: easily indent your Matlab code to reflect the program structure.

• Debugging support: breakpoints may be set on any executable line of a M-file
and the values of any quantities inspected and manipulated.

• Profiling: collect information on the amount of CPU time taken by functions and
individual lines of code.

To start the Matlab Editor, click the New Script icon (this is the first of the icons
in the icon bar in Figure 1.2) or type the command edit in the command window. A
new window appears: the Matlab Editor. Alternatively you can use the Open icon to
open an existing file, or type the command edit cubic.m. If the file cubic.m is not
in Matlab’s current folder then Matlab will ask you if you want to create the file.
Figure 1.3 shows a Matlab Editor window, with a script file called cubic.m that will

Figure 1.3: A Matlab Editor Window

draw a cubic when executed. The Matlab editor window has its own menus and tabs
with icons. These behave in roughly the same way as the corresponding icons in, for
example, Microsoft Word. Note that clicking on the first of the icons will open up a new
buffer (editing space), so it is possible to have several M-files being edited at the same
time. Just under the tabs with the various icons is a list of tabs with the names of the
M-files being edited: click on the appropriate name to change to that file. You may see
that there is a second file called parabola.m being edited in figure 1.3.

6 CHAPTER 1. WHAT IS MATLAB

Before you can run an M-file, that is sequentially execute all the Matlab commands in
the file, you must save the file and the file must be in Matlab’s current folder. Check the
files is listed in the Current Folder sub-window (see Figure 1.2), or type the command
what in the command window. A very common mistake is to edit and save a file which
is not in Matlab’s current folder, so it cannot be run.

Note that the lines beginning with a % sign are comments. Matlab ignores every-
thing on a line that comes after a % sign.

When saving a script file, you will have to give the file a suitable name; with function
files the editor will fill in the name for you — it will always be the name of the function
(with the .m file extension added).

To prepare a Matlab M-file using a different editor, you work out what commands
you want to use and simply use the editor to create a text file containing these commands
(and suitable comments).

Don’t forget to check that

• irrelevant output is suppressed by ending appropriate commands with a semicolon

• your file works

To check that your script file works enter the Matlab command clear to clear all
variables in the current workspace (see section 2.1.5 for more information on the clear
command). Then enter the name of the file (without the .m) and the file should run.

To check that a function file works just use the function as if it were a standard
Matlab function (without any .m extension).
Note: We advise you always to do these checks; the commonest problems are caused
by students creating an M-file that does not work . Running this check will enable you to
spot where errors occur and save a great deal of time, frustration and marks.

Exercise Open a Matlab session and open the Matlab editor. Enter the commands
in figure 1.3 and save the file as cubic.m.

Then activate the Matlab command window and enter cubic at the Matlab
prompt and press the Enter key. Running the file cubic.m should produce a plot
of the cubic in a new window.

When you press the Enter key, Matlab immediately tries to interpret and execute
the command(s) you have entered. If the command is the name of a script M-file, then
Matlab will try to sequentially interpret and execute all the commands in the file.

1.4 Online self-paced lessons for Matlab

A number of introductory self-paced learning modules to provide an introduction to
Matlab are available through your course on the Moodle Learning Management System.
You should work through these, preferably at a computer with Matlab running so you
can try all the exercises. You can also use these notes as an additional reference. The
on-line Matlab learning modules also include tests using Maple TA, which may count
as part of the assessment for your course.

You are expected to create and store in a logical fashion script or function M-files that
answer exercises. These may be inspected as part of the assessment of your laboratory
participation mark or you may be required to create M-files as part of your Matlab
computer laboratory test.

1.5. The Matlab interface 7

1.5 The Matlab interface
The Matlab tabbed interface, both for the main Matlab window and the Matlab

editor has a large number of icons and associated menus. This tabbed interface was
introduced in Matlab R2012b, so older versions have a (very) different graphical user
interface (GUI). The underlying Matlab commands are still the same.

A context sensitive set of menus (that is it changes depending on which window/sub-
window is active) can be obtained by right-clicking. This is often the most efficient way
of accomplishing a task. For example if you have a complicated script open in the editor
with various structural elements, then using the right-click and choosing Select All
followed by Smart Indent causes Matlab to automatically indent loops and logical
blocks.

Note that in the Matlab editor, roughly in the middle of the HOME tab, is a large
green arrow labelled Run (see Figure 1.3). Clicking this arrow gets Matlab to first save
the current file that is being edited and then to try to run the file. Any syntax errors are
reported in the command window, coloured in red. There will also be a link to the line
in the file which caused the error. Clicking on this link will open the file in the Matlab
editor and position the mouse as close to the source of the error as possible.

Warning: The School of Mathematics and Statistics holds computer laboratory ex-
ams in many courses. For these exams the computers are in a special Linux based exam
mode. While Matlab runs on Windows, Linux and Macintosh operating systems, the
short-cut control keys are often different between the different operating systems. For
example in the Windows version of the Matlab editor, Cut and Paste are Ctrl+c and
Ctrl+v respectively, while under Linux Cut and Paste are Alt+w and Ctrl+y respectively.
Thus it is preferable not to depend heavily on the use of short-cut keys. The context sen-
sitive menu obtained by right-clicking gives you the same set of items under both Widows
and Linux.

1.5.1 Help facilities
Matlab comes with a variety of help facilities as part of the software product (plus

many more available over the www). A Matlab command in the file task.m uses
the comments (up to the first blank line) at the beginning of the file or function to
provide documentation about the purpose of the script and input and output arguments
for functions.
In the Matlab command widow, typing

help exp

displays information in the command sub-window about the exp function which is ob-
tained from the comments at the beginning of the file exp.m. At the bottom of the
information displayed in the command window are suggestions for related commands (for
example the log command with help exp. (Do not worry if you have not heard of some
of these commands at this stage).

Matlab’s help browser, pictured in figure 1.4, provides another interface to Matlab’s
documentation.. The information from the comments at the beginning of a file may be
displayed in Matlab’s help browser using the links at the end of the information displayed
by the help command, or directly with the command

doc exp

8 CHAPTER 1. WHAT IS MATLAB

Figure 1.4: The Help browser window with a listing of available toolboxes

You can also search for information using the Search Documentation box in the top
right hand corner of the main Matlab window – see Figure 1.2 or Matlab editor –
see Figure 1.3. Alternatively Matlab’s help browser can be opened by clicking on the
question mark ? in a small circle just to the left of the Search Documentation box. You
can then enter the term you wish to search for. You can search the help pages either for a
known function name or search for a phrase if you do not know the command name (for
example, search on “log”).

The documentation for both exp and log mentions complex numbers which you may
have seen in high school mathematics, but will definitely see in first year university math-
ematics. One of the powers of packages like Matlab, in contrast to Microsoft Excel for
example, is that Matlab can automatically work with complex numbers (this is both
powerful and dangerous).

The best way to learn how to use Matlab is to experiment and try commands,
and explore the online help facilities and examples. The Help browser has tutorials and
information about Matlab toolboxes (additional packages of programs for special ap-
plications – see Figure 1.4) amongst other information. You may use the Help browser in
the laboratory. It may also be used in Matlab tests held in the computer laboratory.

Chapter 2

MATLAB COMMANDS

This chapter provides an introduction to some Matlab commands and basic features of
the language. More details will be provided during your course. There are many books
on Matlab and its use in Engineering, Science and Business. Cleve Moler, one of the
founders of Matlab, has a text book [3], while the Matlab Guide [1] is very useful for
more advanced techniques.

The best way to use this chapter is first to glance through it to get an idea of what
Matlab can do (actually it can do far more than what we have described here), bearing
in mind that many of the things in this chapter refer to mathematical ideas and processes
covered in first year mathematics courses. Later, when you are solving a specific problem,
read through the relevant sections of this chapter and your lecture notes, before preparing
a list of Matlab commands to solve that problem. Then, when you are entering these
commands, use Matlab’s Help browser (see section 1.5.1) for the exact syntax.
NOTE There are built in demos in Matlab. To use them, either enter the command

demo
during a Matlab session or select the “Demos” tab in the Matlab Help browser window.
For further information, see section 1.5.1.

2.1 Basics
2.1.1 Arithmetic

The usual arithmetic operations are available in Matlab and you should use the
following notation to enter them in commands.

addition +
subtraction -
multiplication *
division /
exponentiation ^

So a^b means a to the power b (i.e. ab).
These follow the usual order of evaluation, i.e. anything in brackets, then powers, then

multiplication or division, then addition or subtraction.
If you want to use a different order then you will have to insert brackets ‘(’ and ‘)’ in

the appropriate places. For example -1^(1/2) means -(1^(1/2)) (i.e. −1), whereas
(-1)^(1/2) means

√
−1 (i.e. the imaginary number i , which is denoted 1.0000i in

Matlab) and -1^1/2 gives −0.5000 .

2.1.2 Assigning variables
You use = to assign a value to a variable, for example

x=1,f = sin(x)

9

10 CHAPTER 2. MATLAB COMMANDS

This assigns the value 1 to x and then sin(1) ≈ 0.8415 to the variable f. If x were an
unknown (it had not been assigned a value), then you would get an error message.

What we have been doing is called assigning a value to a variable and the general
format for doing it is

variable name = expression

After you have given an assignment command, Matlab will replace the named variable
with its assigned value wherever that variable name occurs in the future.

If you do not assign an answer to a variable, then Matlab will assign the result of the
calculation to the default variable ans, which you can then use in the next calculation
like any other assigned variable.

2.1.3 Variable Names
Variable names must start with a letter and the initial letter can be followed by letters,

digits and the underline character “_”.
There is effectively no limit to the length of a name, but Matlab only looks at the

first few characters, where “few” depends on how that system is set up: on the version
in the Mathematics and Statistics computer laboratories it is the first 63 characters that
count (see the command namelengthmax). Upper and lower case letters are treated as
different in names. Here are some examples

t t3 A_b T time

You should avoid using names already used as function names for your own variables,
as then you would be unable to use the function. You can test to see if a name is being
used by a command like

>> which -all tan_x
tan_x not found.

This means that tan_x can be used as a variable. Anything else means it cannot.

Special Variables
Five names stand for constants that are important namely,

pi π ≈ 3.14159265358979
i or j i =

√
−1

Inf ∞
eps 2−52 ≈ 2.2× 10−16 the machine epsilon

The machine epsilon eps is the smallest positive number such that Matlab considers
1+eps to be greater than 1.

2.1.4 Controlling Output
Often in doing Matlab calculations you will create a very long output that you do

not need to actually see. You should get into the habit of suppressing long output by
ending such commands with a semi-colon ; so that your Matlab screen does not get
cluttered up. So for example

>> a=3; b=5^2-a^2
b =

16

You can also control the amount of space that Matlab uses between lines using the
command format compact.

2.1. Basics 11

2.1.5 clear
The command clear can be used to remove variables and functions from memory:

clear clears all variables
clear functions clears (i.e. forgets about) all M-files and other defined functions
clear a b clears variables (or M-files) a and b only
clear all clears everything: variables, M-files etc.

See the help on clear for further detail.

2.1.6 Number Formats
Matlab does all its calculations in IEEE double precision (64 bit) floating point

binary arithmetic. This means that Matlab works to about 16 decimal digits and can
handle floating point numbers as large as about 10308 and as small as about 10−308 . See
the functions realmin and realmax.

To control how a number is displayed, you use the format command: changing the
format has no effect on Matlab’s internal calculations.

The following table shows the output of
√

2009 in the various formats.

command output
format short 44.8219 this is the default

format short e 4.4822e+01 that is, 4.4833× 101, note rounding

format long 44.821869662029940 16 places (double precision)

format long e 4.482186966202994e+01

format bank 44.82 as if it were money

format rat 14343/320 a rational approximation

There are two other possible types of output you might get from Matlab:

Result Meaning
Inf ∞

NaN not a number, e.g. 0/0

2.1.7 Complex numbers
Matlab can also handle complex numbers, such as i =

√
−1 . Matlab will recognise

both i and j (if they have not been used as variable names) as this complex number. For
example

>> 1/2+sqrt(3)*i/2
ans =

0.5000 + 0.8660i

The commands real, imag, abs and angle when applied to a complex number give,
respectively, the real part, imaginary part, modulus (absolute value) and argument of the
complex number. For example:
>> z=1/2-3*i/4;
>> real(z),imag(z),abs(z),angle(z)
ans =

12 CHAPTER 2. MATLAB COMMANDS

0.5000
ans =

-0.7500
ans =

0.9014
ans =

-0.9828

You could also have defined the complex number z by z = complex(1/2,-3/4)

2.2 Saving Sessions, Input and Output
Matlab’s main purpose is to perform tasks on large amounts of data, so you need to

be able to get data into Matlab and save data from Matlab for later processing. In
some of the laboratories exercises, you may be asked to perform some analysis on data
will be provided for you (such as the temperature at each point of a grid in a two or three
dimensional object or daily share prices for a portfolio of fifty stocks over two years). It
is also useful to be able to record your Matlab session so that you can later rerun the
same commands, maybe with different data or with minor modifications.

2.2.1 Data Input and Output
The save command is used to save the values of some or all of the variables in your

Matlab session. This command saves into a file known as a Mat-file. Note that you
cannot edit these files, as the information is stored in a binary (non ASCII) format. Also,
Mat-files must have the .mat file extension, which Matlab will add if you do not.

The load command does the opposite of save, and loads a Mat-file into the workspace.
For example,

>> save price.mat jan feb
>> save apr21
>> load apr1

The first command saves variables jan and feb to the file price.mat; the second
saves all variables into the file apr21.mat, with the .mat automatically added by Mat-
lab; the last command loads the file apr1.mat, again automatically adding the .mat
extension.

2.2.2 Recording your Session
Matlab has a built in feature that allows you to re-run the previous commands: a

history file. This file stores all the previous commands you have entered into Matlab
as you type them. You can see this in the the Command History sub-window (see
Figure 1.2).

If you are using more than a couple of commands it is better to write a script file (see
section 2.6) when you use Matlab.

If the Command History sub-window is not displayed, tick the box “Command His-
tory” under the Layout icon. If you double click on a command in Command History
sub-window, it will be entered into Matlab and executed. To select more than one line,
hold down the Ctrl key and click each line. The you can right-click the mouse button,
select copy, click in th command window, again right-click and select paste, to execute
the selected commands.

2.3. Built-in Functions 13

The history file is separated into sections for each different Matlab session, and each
of these will have a time stamp. An entire session’s history can be “collapsed” by clicking
on the − symbol on the left of this time stamp.

There is an option on the Edit menu allowing you to clear your command history if
you want to.

2.3 Built-in Functions
Although we will not discuss the creation of new functions until section 2.6, we will be

using functions in the next few sections, and so we will need some functions which have
already been defined. Matlab has an enormous number of ‘initially-known’ mathemati-
cal functions (i.e. ones which are already there when you start Matlab). These include
the trigonometric functions

sin, cos, tan, csc (i.e. cosec), sec, cot
and their inverse functions

asin, acos, atan, acsc, asec, acot
and the hyperbolic functions

sinh, cosh, tanh, csch (i.e. cosech), sech, coth
and their inverse functions

asinh, acosh, atanh, acsch, asech, acoth
as well as, for example:

Function Description Example

abs absolute value abs(-2)
sqrt square root sqrt(4)
max largest element in an array max([132,129,66,120])
min smallest element in an array min([132,129,66,120])
factorial factorial function factorial(12)
round round (up/down) to an integer round(3.5)
floor round down to an integer floor(-3.1)
ceil round up to an integer ceil(-3.1)
exp exponential exp(1)
log natural logarithm log(exp(2))
log10 logarithm to base 10 log10(100)

Note that most of these function will work on one number, or if applied to a vector or
matrix (see sections 2.4 and 2.8) to each element of the vector or matrix.

For a complete list of the initially-known Matlab functions, use the Help browser
(see section 1.5.1).

2.4 Basic Vectors
From its beginning, Matlab was designed to work with matrices and vectors, as its

name suggests. Everything in Matlab is, potentially, a matrix: a number on its own is
really a 1× 1 matrix to Matlab. Matrices and vectors are collectively called arrays in
Matlab.

We begin by looking at vectors.

14 CHAPTER 2. MATLAB COMMANDS

2.4.1 Row and Column vectors
There are two types of vectors in Matlab: row vectors and column vectors. Both

types of vector have square brackets enclosing the elements (also called components), and
for both the command size will give the dimensions of the array, while numel gives the
total number of elements in an array.

A row vector is printed as a row, and when you define one you separate its elements by
either commas or spaces. A column vector is printed as a column, and you use semi-colons
or new lines to separate the elements. For example

>> v=[1 3 , sqrt(21)]
v =

1.0000 3.0000 4.5826
>> w=[1 ; 3 ; sqrt(21)]
w =

1.0000
3.0000
4.5826

>> size(v)
ans =

1 3

You can convert a row vector to a column vector and vice versa using the apostrophe
or back quote ’ — we call this transposing.

>> v=[1 3 sqrt(21)] , v’
v =

1.0000 3.0000 4.5826
ans =

1.0000
3.0000
4.5826

To refer to an element of a vector, for example the third element of vector v, use an
expression like v(3). This can be extended to extract sequences of elements using the
colon notation, see section 2.4.3. You can change the value of an entry with something
like w(2)=-3 as well. Note that in Matlab all vectors (and matrices) are indexed from
1 (that is v(1) is the first element). You can also use end to refer to the last entry in a
vector.

2.4.2 Vector arithmetic
Two vectors of the same size can be added and subtracted. In fact, you can make any

linear combination of the vectors you want:

>> a=[1 -4 9]; b=[-2 2 3];
>> 2*a - 3*b
ans =

8 -14 9
If the vectors are not compatible then you will get an error message.

2.5. Plotting 15

You can apply functions to each element of a vector very simply:

>> v=[pi/4,pi/3,pi/2]; sin(v)
ans =

0.7071 0.8660 1.0000

2.4.3 Colon and linspace
Entering a small vector by hand is not a problem, but Matlab was designed for

big problems, and often these involve vectors whose entries have some regularity, such
as consecutive integers, or consecutive odd integers going downwards. If the entries of a
vector are an arithmetic sequence, then you can use the colon operator or the linspace
command to build the vector. Both of these produce row vectors, which can be transposed
to column vectors with the apostrophe. For example

>> a=[1:4]
a =

1 2 3 4
>> b = linspace(1,4,4)
b =

1 2 3 4
>>c = [7:-2:1]
c =

7 5 3 1

In general using [a: b: c] where a , b and c are numbers will create a row vector
whose first element is a , second element a + b etc and whose last element is no greater
than c (if b > 0 , no less than c if b < 0). If there are only two numbers then Matlab
assumes the increment (b above) is 1, as in the first example.

On the other hand, linspace(a, b, c) creates a row vector with exactly c entries
(100 if c is omitted) with entries equally spaced between a and b .

The colon operator can be used to extract more than one element at a time. Suppose
vector w had 12 elements. Then the command

>> w([1:2:5, 10:end])
will create a vector consisting of elements w(1),w(3),w(5),w(10),w(11),w(12)
only.

2.5 Plotting
Matlab has a large number of plotting commands, used for various special plots. We

will only look at a few of the simplest and easiest.

2.5.1 plot command
The basic plotting command is plot.

The file containing figure 2.1 was produced with the following commands

>> x = linspace(0,1,101);
>> y = sin(4*pi*x);
>> plot(x,y);
>> print -dps ’sinplot.ps’

16 CHAPTER 2. MATLAB COMMANDS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.1: Plot of sin(4πx) over [0, 1]

The first command sets up a vector of 101 points along the x -axis, equally spaced
between 0 and 1 (so 0.01 apart) and including both 0 and 1. Then we define sin(4πx)
for each of these points. The plot command then plots the points (xi, yi) for each xi
in the vector x and corresponding yi in vector y, then joins them up with straight lines:
since the points are so close together the graph looks like a curve, but if you did this with
points spaced 0.1 apart you would see the lines. The final command saves the plot into a
PostScript file called sinplot.ps, which can be viewed using ghostview and/or printed
out.

See section 2.7.3 for plotting parametric curves and more complicated functions.

2.5.2 ezplot
The plot command is very powerful, but often you just want to plot a function directly.

The ezplot command can do this. A graph similar to figure 2.1 could have been produced
with one command using

>> ezplot(’sin(4*pi*x)’, 0 , 1)
Note the use of the apostrophes here: they cannot be left out.

2.5.3 Style options
There are a large number of options you can use with plot to change how the graph is

plotted or its colour. If you wanted to plot the graph of sin(4πx) with a red dashed line
instead of the default blue solid line, for example, you would use the command

>> plot(x,y,’r--’)
where the quotes make the third argument a string. The r is the colour and the -- is
the code for dashed. Some other possibilities are as below.

2.6. M-files and New Functions 17

code r y g b c m w k

colour red yellow green blue cyan magenta white black

code . o - : -. -- x *

style points circles solid dotted dash-dot dashed x-marks stars

The different styles and colours allow you to plot several graphs at once in a way you
can tell them apart. To plot both sin(4πx) and cos(4πx) you could use (with x and y

as above)

>> z = cos(4*pi*x);
>> plot(x, y , ’r-’ , x , z, ’b--’)
Here the sin plot is red and solid, the cos plot blue and dashed.

2.5.4 Titles, axes and grids
The ezplot command will automatically put a title on a graph — it uses the function

as the title, not surprisingly. You can put a title on any plot using the title command,
for example

title(’My first plot’);
adds the title “My first plot” to the current plot. Here the quotes define the title as a
string.

Also, ezplot will label the x -axis with whatever you have used as the variable (x
in the example above). To label axes for any other plot, use the commands xlabel and
ylabel in the obvious manner. Finally, you can put a grid over a plot with grid on.
Figure 2.2 shows what the earlier plot of sin(4πx) looks like after the additional com-
mands

>> title(’My plot of sin(4 \pi x)’);
>> xlabel(’x axis’), ylabel(’y axis’), grid on

Note: The use of \pi to define the symbol π . This tells Matlab that you want the
correct symbol and not just the letters pi.

2.5.5 Specialised plot procedures
We mention one other useful specialised plotting command: polar, used to draw

graphs in polar coordinates. For example, figure 2.3 is the result of the following com-
mands

>> t = linspace(0, 2*pi, 200);
>> r = 1 + cos(t);
>> polar(t,r);
>> title(’Cardioid’)

2.6 M-files and New Functions
In section 1.3 we looked at an example of a script file, also called an M-file. This was

an ordinary text (ASCII) file containing Matlab commands; typing the name of the file
(without the .m extension) causes Matlab to run those commands as if you had typed
them in.

Note that when you run a script file, Matlab only prints the results of the commands,
not the commands themselves. Use echo on to echo the commands; echo off turns

18 CHAPTER 2. MATLAB COMMANDS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x axis

y
 a

x
is

My plot of sin(4 π x)

Figure 2.2: Second plot of sin(4πx) over [0, 1]

this echoing off. You can also use what to get a list of the M-files in your current directory
(as well as finding out what Matlab thinks is your current directory).

2.6.1 Function Files
A function file is another type of M-file, and is one way to define new Matlab

functions. To illustrate how these work, we consider an example:
Suppose you had r identical objects (coins perhaps) to be distributed to n people

where each person can get more than one object: this is known as a selection. The number

of ways you can do this can be shown to be
(n+ r − 1)!

(n− 1)!r!
. The following commands creates

a Matlab function selection that calculates this number.

function [N] =selection(n,r)
%
% N=selection(n,r)
% number of ways N of distributing r objects among n
%
N = factorial(n+r-1)/(factorial(n-1)*factorial(r));

%%%% end of file %%

To make use of this you have to save this sequence of commands into a file called

2.6. M-files and New Functions 19

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

Figure 2.3: Plot of the cardioid r = 1 + cos(θ) using polar

selection.m — the name of the file and the name of the function must be the same.
To use the function, all you need to do is use it like any standard Matlab command

>> selection(11,4)
ans =

1001

There are several important points to be made

1. As already mentioned, the name of the file and the name of the function must be
the same.

2. The first (non-comment) line must be of the form

function [list of outputs] = name(list of inputs)

3. Do not forget to document your function. The comment lines immediately after
the opening line are printed out when you ask Matlab for help on the function,
so make them useful. This is why we have included the calling sequence in the
comments.

4. It is possible to have more than one output variable (see the help pages on functions).

2.6.2 Anonymous Functions
An alternative way to define a function is to create an anonymous function. This is

useful if you have a function (say a polynomial) that you wish to evaluate at several points

20 CHAPTER 2. MATLAB COMMANDS

in your session but do not want to save as an M-file. These anonymous functions are also
used in numerical integration (see section 2.9) and other places. A simple example will
illustrate the idea:

>> polynom=@(t) t.^2-2.*t-3
polynom =

@(t) t.^2-2.*t-3
>> polynom(-2)
ans =

5
Note the use of the compulsory @ symbol, which is used to create the function handle,

in this case polynom. The parentheses immediately after the @ contain the function
parameters, which behave like the parameters of a function file. It is possible to have more
than one parameter, or even no parameters. However, even if there are no parameters
to pass to the function, you must include the parentheses to call the function (see the
Matlab help page on anonymous functions for an example).

2.7 Further Vectors
2.7.1 Ordinary Product

Given a row vector v and a column vector w both with the same number of elements,
you can get Matlab to calculate the usual matrix (or dot) product of v and w using a
star for what is really matrix multiplication. So for example

>> v=[1 3 5 7]; w = [-2 ; 3 ; 4 ; -5];
>> v*w
ans =

-8
An alternative is to use the Matlab command

>> dotprod(v, w)

2.7.2 Array Arithmetic
One of Matlab more useful but unusual features is a heavy reliance on array oper-

ators. These are operations that are applied element-by-element to an array (a vector or
matrix). We have already noticed that we can say, for example, sin(v) for a vector v
and get a vector whose entries are the sines of the entries of v.

We can apply more basic functions to the elements of an array (or more than one
array, as appropriate) by using array operators, sometimes called dot operators, as they
use a dot. For example, we can create a vector whose elements are the cubes of the first
5 integers by the command

>> [1:5].^3

Note the dot: .^3 means cube each member of the array separately. It’s not the same as
cubing an array in the usual mathematical sense you would use for, say, square matrices.

Other examples include .*, which can be applied to two arrays of exactly the same
shape and will multiply corresponding entries together, and ./ which will similarly divide
corresponding entries. For example
>> v = [1 2 3 4]; w = [2 3 5 7];
>> v.*w

2.8. Matrices and Linear Equations 21

ans =
2 6 15 28

>> v./w
ans =

0.5000 0.6667 0.6000 0.5714

2.7.3 More on plotting
We can use the array arithmetic mentioned above to plot more complicated functions,

for example polynomials, or something like e−x
2

.
So we could plot x3 − 2x2 + 3 over [−2, 2] with

>> x = linspace(-2,2,200); y = x.^3-2*x.^2 + 3; plot(x,y)

And plot e−x
2

over [−2, 2] with

>> x = linspace(-2,2,200); y = exp(-x.^2); plot(x,y)

But we can also plot parametric functions this way. As a simple example, suppose we
want to plot the curve given by x = t2 , y = t3 for −1 ≤ t ≤ 1 . Then we could use the
commands

>> t=-1:0.01:1;
>> plot(t.^2, t.^3)

2.8 Matrices and Linear Equations
We next turn to the mathematical objects that give Matlab its name: matrices. A

p× q matrix is a rectangular array of numbers, with p rows and q columns, for example

A =

(
1 2 3
6 7 −2

)
is a 2× 3 matrix.

2.8.1 Definitions
To enter the matrix A above we follow the same syntax as for vectors. We enter each

row with spaces (or commas) separating the entries and with semi-colons separating the
rows (that it, defining the columns). So we can enter the matrix A above with

>> A = [1 2 3 ; 6 7 -2]
Alternatively, you can take a new line for each new row:

>> A = [1 2 3
6 7 -2]

You can use the colon to create rows of a matrix as well, so the first row of A could
have been defined using 1:3.

The apostrophe can be applied to a matrix to get the transpose matrix: all the
rows are swapped to columns and vice versa. There are other commands in Matlab to
rearrange matrices, such as flipud and fliprl will flip a matrix up-down (around a
horizontal axis) and right-left (around a vertical axis) respectively — compare these to
the transpose, which is a flip around a diagonal.

22 CHAPTER 2. MATLAB COMMANDS

You can get the size of a matrix using the command size, for example

>> size(A)
ans =

2 3
size is an example of a function that returns a matrix: a 1× 2 matrix in fact.

Entries of a matrix can be extracted or changed just as for a vector, although you need
to give two indices of course. For example A(2,1) extracts the entry in the second row,
first column of A (if A has a second row). Similarly to vectors you can extract more than
one element using the colon, and in this way create submatrices. Once again, the indexing
begins from 1 and the keyword end can be used for the last entry, see section 2.4.1.

For example

>> B = [1 3 5 ; 2 4 6 ; 4 9 16];
>> C = B(2:3 , :)

C =
2 4 6

4 9 16

Note that the colon on its own is equivalent to 1:end and means all the rows (or
columns) of the matrix.

In many applications matrices have some sort of structure and are most easily made
by being built up from smaller matrices and/or vectors. One obvious example is creating
the augmented matrix for a system of linear equations (see section 2.8.5 for solving linear
equations). However, in Matlab you can not only augment matrices/vectors (put them
side by side) but also stack them (put one on top of the other). For example:

>> A=[1 2; 3 4]; v=[-1; -1]; B= [-3 -2 ; 0 -1];

>> [A v] % augmenting
ans =

1 2 -1

3 4 -1
>> [A ; B] % stacking

ans =
1 2
3 4

-3 -2
0 -1

2.8.2 Special matrices
Matlab includes several useful commands for creating special types of matrices:

1. For a 3× 3 (say) identity matrix, use eye(3)

2. For a 3× 4 (say) matrix of zeros use zeros(3,4)

3. For a 3× 2 (say) matrix of ones use ones(3,2)

2.8. Matrices and Linear Equations 23

4. To create a diagonal matrix whose entries are the elements of the vector v use
diag(v)

These matrices can be particularly useful in stacking and augmenting matrices.

2.8.3 Standard Matrix Arithmetic
For the usual mathematical product of two matrices, or a matrix and a vector, use

the * symbol on its own. The two arrays you multiply must have compatible dimensions.
Also, do not forget that A*B and B*A will in general give different results

>> A = [1 2 3; 4 5 6];
>> B = [0 1 ; 1 0 ; 0 0];
>> A*B
ans =

2 1
5 4

>> B*A
ans =

4 5 6
1 2 3
0 0 0

Later on in your courses you will need to use the various Matlab commands for
calculating with matrices. For example,

inv(A) for the matrix inverse;

det(A) for the determinant;

eig(A) for calculating eigenvalues and eigenvectors;

rank(A) for the rank.

2.8.4 Matrix array arithmetic
Just as in the case of vectors, Matlab allows you to operate on each element of a

matrix individually, so for example exp(A) will give a matrix whose (i, j) th entry is eaij .
In later year courses you may come across the matrix exponential, (expm in Matlab)
which is a completely different thing, used for solving systems of differential equations.

Also, the “dot” operators work on matrices. So A.^2 will square every entry of matrix
A . This is very different to A^2, which is shorthand for A*A of course.

2.8.5 Systems of Linear Equations
There are special built in procedures \ and rref for solving systems of linear equa-

tions.
The backslash or left division operator is used for solving a system of equations of

the form Ax = b . For example

>> A= [3 7 ; 2 5]; b = [1 ; 2];
>> A\b
ans =

24 CHAPTER 2. MATLAB COMMANDS

-9.0000
4.0000

This is mathematically the same as calculating A−1b (you could solve the problem
with inv(A)*b in Matlab) but left division is generally faster and uses some sophis-
ticated techniques appropriate for solving systems with floating point numbers, so is a
better way of finding the solution, as well as being easier to type. However, be aware
that left division will return a result even if the system is actually inconsistent (has no
solutions). In this case the answer you get is the least squares best fit to a solution,
since this is what is usually wanted in such situations, as you may see in future courses.
You need to use rank(A) or something similar to check you have a unique solution if you
are uncertain.

If you actually want to do a row reduction (Gaussian elimination), the command
rref(A) will reduce A to reduced row echelon form. If A were the augmented matrix
of a system of linear equations (see page 22), then the last column of the reduced row
echelon form is a solution to the system.

2.9 Calculus
Matlab is not capable of doing true calculus on its own — for that you would

need to use a Computer Algebra System such as MAPLE. But Matlab can do some
calculus calculations, for example numerical integration also called quadrature: finding
the approximate value of a definite integral.

The simplest commands to use are trapz and quad. The former uses the trapezoidal
rule and the latter Simpson’s Rule to calculate an integral. Note that quad uses an
adaptation of Simpson’s Rule to make it faster and more accurate. For example, suppose
you wished to approximate the value of

∫ π
0

sin(x2) dx by Simpson’s rule using an absolute
error tolerance of 10−15 . Then we begin by defining an anonymous function (section 2.6.2)

>> format long
>> fcn=@(x) sin(x.^2);
>> quad(fcn,0,pi,10^(-15))
ans =

0.77265171269007
We see here the use of the function handle fcn: it literally gives us a “handle” on the

anonymous function so we can use it in quad.

2.10 Programming Considerations
So far, the examples we have discussed have been essentially using Matlab as a

(sophisticated) interactive calculator. However, Matlab is programmable, in the sense
that you can get it to do repeated calculations and make choices. You may be expected
to be able to do some simple programming in this sense in your course, and if you are to
make proper use of Matlab’s power you need to be able to use the two constructs we
now turn to: conditionals and loops.

2.10.1 Logicals
Before we look at if statements and loops, we need to consider how Matlab will

be handle true/false, in other words how Matlab does boolean algebra. A variable or
command that results in true/false is known as a boolean. Quite simply, in Matlab

2.10. Programming Considerations 25

the integer 0 represents false and 1 represents true. Suppose you had a variable x and you
wanted to test to see if it is greater than ten (without actually looking at it). In Matlab
this would look like

>> x>10
ans =

1
and the value of ans tells you that x is greater than 10.

There are 5 other relational operators apart from >, illustrated below. Note that
they can all be used on arrays and then are applied elementwise, as is typical. Suppose
we have a vector defined by

>> x = [0 -1 2 4]
ans =

[0 -1 2 4]

then we have the following possibilities

command result description

x==2 [0 0 1 0] entries equal to 2

x>2 [0 0 0 1] strictly greater than 2

x>=2 [0 0 1 1] greater than or equal to 2

x<2 [1 1 0 0] strictly less than 2

x<=2 [1 1 1 0] less than or equal to 2

x∼=2 [1 1 0 1] not equal to 2

Note that the 2 on the right hand side is assumed to be an array of the right size all of
whose entries are 2.

For more advanced uses of logicals we need the logical operators & (and), | (or) and
∼ (not). So with the vector x above we get

>> x>=0 & x <=2
ans =

[1 0 1 0]
>> x<0 | x>1
ans =

[0 1 1 1]
>> ∼(x>2)
ans =

[1 1 1 0]

2.10.2 If Statements

An if...elseif...end statement is known as a conditional, a branch or a fork

— control is sent down one of two possible paths depending on the truth value of a boolean

statement. For example

if (x>3) | (y<=2) ... end

26 CHAPTER 2. MATLAB COMMANDS

if (a>b) & (c>d) ... end

If the boolean is true then Matlab runs the commands after the boolean. If you

want to, you can make Matlab do something else if the boolean is false, or do nothing;

you do the former with an else clause. For example, the following commands find the

absolute value of a real number:

if x>=0

x

else

-x

end

You can nest if statements as well; the general form of the if command is something
like

if condition1
commseq1

elseif condition2
commseq2

elseif condition3
commseq3

else
commseq4

end

2.10.3 Loops
Suppose that you want to execute a set of Matlab commands several times, changing

the value of one variable n at each repetition. This is called creating a loop, and is very
common in scientific and financial programming.

The way you create the loop depends on whether you know in advance exactly how
many times you want to repeat the commands or not. If you know that you want to
repeat the commands 100 times then you can use a construction of the type
for n = 1:100

commands
end

The 1:100 is the colon operator we met before, and can be generalised here too, so
100:-2:0 would have n run through even numbers backwards. Also note that unlike
many other languages, Matlab allows non-integer increments in loops, so h=0:0.1:1
is legal. The end is essential to tell Matlab where the commands to be repeated end.

If you do not know how many repetitions you want to make then you will have to tell
Matlab to keep repeating until some condition is no longer satisfied, using a construction
of the type
while a<= b

commands
end

To illustrate, we give two examples. Firstly, consider the following commands

2.10. Programming Considerations 27

>> t=linspace(0,2*pi,200);

>> for n = 0.5:0.5:4

polar(t,2+n*sin(t))

pause

end

This block will plot various polar curves known as limaçons, with the pause statement
making it stop after each plot until you press any key (a message at the bottom of the
main Matlab window tells you this). Note also that there is a message at the bottom
of the Matlab window as you enter the commands in the loop, telling you to “continue
entering statement”.

Secondly, suppose you wish to find all the Fibonacci numbers up to and including the

first one that is larger than 1000 . The natural way to do this is to calculate each number,

check to see that it is smaller than 1000, if not, then calculate the next one and repeat.

But we cannot check the size of the number at the end of a loop in Matlab, only at the

start. To get around this, we do the following:

>> F(1)=0 ; F(2)=1 ; n=2;

>> while F(n)<=1000

F(n+1) = F(n)+F(n-1);

n=n+1;

end

At the end of this loop F(n) will contain the first Fibonacci number greater than
1000, which is 1597 , and the vector F will have all the calculated Fibonacci numbers in
it. Note that the semi-colon after the each statement in the block suppresses the printing
of the intermediate values.

2.10.4 Other Control Structures
Matlab has other commands used in programming, which we will leave you to explore

yourself if you need to use them.
For more general branching than is provided with if statements, Matlab provides

the switch construction, where control can be sent down any number of different forks
depending on the value of a variable.

The command break in a for or while loop stops the loop and either returns to
the input prompt or execution continues with the command after the end.

An error command can be used to abort a function or script file, sending a message
as it does so. Similarly, a return in a function stops the execution, returning to the input
prompt (or invoking function, if the return is in a function called by another function).

There are also the commands input, keyboard and menu (as well as pause, which
we saw earlier) which can be used to make functions interactive. Again, for details and
examples, see the Help pages.

Note that it is always much easier to understand code containing control statements
like for if they are indented, as we have shown here. This can easily be done using the
Matlab editor: use the mouse to highlight the code with the control statements and
then select the option Smart Indent from the Text menu of the Matlab editor.

Bibliography

[1] D. J. Higham and N. J. Higham, Matlab Guide, 2nd Edition, SIAM, Philadelphia, 2005.

[2] The MathWorks, Matlab & Simulink Student Version R2013a, 2013. (Matlab software
with a selection of toolboxes, available from UNSW Bookshop http://www.bookshop.

unsw.edu.au/computing/).

[3] C. B. Moler, Numerical Computing with Matlab, SIAM, Philadelphia, 2004. (Available
online at http://www.mathworks.com.au/moler/chapters.html).

[4] R. Pratap, Getting started with Matlab: A Quick Introduction for Scientists and
Engineers, Oxford University Press, 2009.

28

http://www.bookshop.unsw.edu.au/computing/
http://www.bookshop.unsw.edu.au/computing/
http://www.mathworks.com.au/moler/chapters.html

	=What is MATLAB
	What is Matlab?
	The Matlab Window
	Preparing Matlab script Files
	Using the Matlab Editor

	Online self-paced lessons for Matlab
	The Matlab interface
	Help facilities

	=MATLAB COMMANDS
	Basics
	Arithmetic
	Assigning variables
	Variable Names
	Controlling Output
	clear
	Number Formats
	Complex numbers

	Saving Sessions, Input and Output
	Data Input and Output
	Recording your Session

	Built-in Functions
	Basic Vectors
	Row and Column vectors
	Vector arithmetic
	Colon and linspace

	Plotting
	plot command
	ezplot
	Style options
	Titles, axes and grids
	Specialised plot procedures

	M-files and New Functions
	Function Files
	Anonymous Functions

	Further Vectors
	Ordinary Product
	Array Arithmetic
	More on plotting

	Matrices and Linear Equations
	Definitions
	Special matrices
	Standard Matrix Arithmetic
	Matrix array arithmetic
	Systems of Linear Equations

	Calculus
	Programming Considerations
	Logicals
	If Statements
	Loops
	Other Control Structures

