

## School of Materials Science and Engineering

## Bending Test – Formulas



 $E_f = Elastic \, Modulus \, (MPa)$ 

 $\sigma_f = Flexural\ stress$ 

 $\epsilon_f = Flexural strain$ 

 $L = length \ of \ beam \ between \ supports \ (mm)$ 

 $L_i = distance \ between \ loading \ span \ (4-point \ bend)$ 

 $b = width \ of \ beam \ (mm)$ 

d = thickness of beam (mm)

 $F = load \ applied \ (N)$ 

D = deflection of beam at load (mm)

x = distance away from support

 $m = \frac{N}{mm}$  initial straight line of load deflection

| Property                                                | Formula                                                                           |
|---------------------------------------------------------|-----------------------------------------------------------------------------------|
| Elastic Modulus                                         | $E_f = \frac{L^3 m}{4bd^3}$                                                       |
| Flexural Stress (3-point)                               | $\sigma_f = rac{3FL}{2bd^2}$ Rectangular $\sigma_f = rac{FL}{\pi R^3}$ Circular |
| Flexural Stress (4-point)                               | $\sigma_f = \frac{3F(L - L_i)}{2bd^2}$                                            |
| Flexural Strain – outer surface (surface under tension) | $\epsilon_f = \frac{6Dd}{L^2}$                                                    |
| Bending Moment (3-point)                                | $M = \frac{Fx}{2}$                                                                |
| Second Moment of Area                                   | $M = \frac{FL}{4}$ moment at load                                                 |

Bending Test - Formulas