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a b s t r a c t

Australia has numerous landforms and features, some unique, that provide a useful reference for

interpreting the results of spacecraft orbiting Mars and exploring the martian surface. Examples of

desert landforms, impact structures, relief inversion, long-term landscape evolution and hydrothermal

systems that are relevant to Mars are outlined and the relevant literature reviewed. The Mars analogue

value of Australia’s acid lakes, hypersaline embayments and mound spring complexes is highlighted

along with the Pilbara region, where the oldest convincing evidence of life guides exploration for early

life on Mars. The distinctive characteristics of the Arkaroola Mars Analogue Region are also assessed and

opportunities for future work in Australia are outlined.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Australia has much to offer researchers interested in Earth
analogues of both ancient and modern environments on Mars. The
ancient terrains and arid regions of central Australia have
preserved many landforms that are unique to Australia. Low-
relief deserts with extensive duricrust plains, stony deserts and
continental-scale dune fields abound along with numerous well-
preserved impact structures. Examples of drainage aligned playas,
clay pans, acid lakes, hypersaline embayments and mound spring
complexes can also be found and are analogous to features
suspected of existing on Mars in the past. Australia also possesses
some of the best studied and largest hydrothermal systems on
Earth and the earliest convincing evidence of life is recorded in the
Pilbara region of Western Australia.

In addition to the array of interesting geological sites, Australia
has a stable political situation, excellent local infrastructure and
modern services, researchers with extensive experience operating
in the arid interior and a scientific community well versed in
ll rights reserved.

hysics and Engineering, The

ustralia.

. West),
planetary geology. The climate is bearable and the areas of
interest are remote enough that land use does not create problems
with interpreting deposits; a common problem elsewhere (Cooke
and Reeves, 1976). Furthermore, the country is well imaged by
various orbiting instruments and results from sophisticated
airborne remote sensing instruments are available locally.

In this work, the geology of various landforms are reviewed in
the context of their Mars analogue value and comparisons are
made with features observed or inferred on Mars. This work aims
to augment similar reviews of Mars analogue science activities at
locations in the Canadian Arctic, United States, South America,
Europe and North Africa (Lee and Osinski, 2005; Osinski et al.,
2006; Pollard et al., 2009; Pacifici, 2009; L�eveill�e, 2010). The testing
of technologies and strategies for Mars exploration in Australia’s
analogue sites are discussed in a companion work (West et al.,
2009) and the education and public outreach opportunities of Mars
analogue research activities in the Australian context are discussed
elsewhere (Laing et al., 2004, 2006; West et al., 2009).

2. Desert landforms

2.1. Gibber plains

The gibber plains of the Strzelecki and Sturt Stony Deserts bear
a striking resemblance to the panoramas produced by several
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Mars landers. Many features common to Australia’s desert regions
have also been identified in images taken from Mars orbit. To date,
however, there has been little exploration of the potential of
Australian examples of quintessential desert landforms, dunes
and dry fluvial deposits as Mars analogues. For example, the large
areas of duricrust materials in central Australia, particularly
silcrete, may have formed when silica-rich ground water met
saline waters contained in paleolakes. Given the evidence for
paleolakes on Mars and for earlier wetter conditions, the
formation of silcrete in a fashion similar to that found in
Australia’s gibber plains might be possible. Thomas et al. (2005)
have discussed the gibber plains of the Sturt Stony Desert (Fig. 1)
as an analogue of deflation surfaces imaged at Chryse Planitia by
the Viking 1 lander. In the Sturt Stony Desert silcrete gibbers
armour a surface dominated by fine silt with scattered floating
silcrete clasts.

2.2. Dune fields and sands

Australia’s desert dune fields represent more the 38% of the
world’s aeolian landscape (Wasson et al., 1988) yet few studies
have investigated their potential as Mars analogues. Contained in
seven interconnected deserts, most dunes are longitudinal and are
up to 300 km long, 10–35 m high and spaced 16–200 m apart.
Linear dunes such as these are rare on Mars. However, a localised
occurrence of mobile crescentic dunes (barchans) at Gurra Gurra
Waterhole on the edge of the Strzelecki Desert were studied by
Bishop (2001, 1999) and compared to dunes on Mars. In particular,
Bishop (2001) noted the importance of the formation of cement-
ing crusts in stabilising dunes. This was borne out by Bourke et al.
(2008) who attributed the immobility of some dunes and the
mobility of others to the presence or absence of cementing crusts.
The Gurra Gurra dunes were also cited as possible analogues of
the barchans imaged on the floor of Proctor Crater by the Mars
Orbital Camera (Fenton et al., 2003; Taniguchi and Endo, 2007).

The dune sands of Australian ergs range in colour from white to
dark red. Debate continues as to whether this is a function of age
or sediment source. Kuhlman et al. (2001) investigated red dune
sand from a desert region near Kata Tjuta/Mt Olga, Northern
Territory as a potential martian regolith analogue. Microanalytical
techniques, including pseudoconfocal microscopy and transmis-
sion electron microscopy, revealed the ubiquity and non-uni-
formity of the red-orange coating on every grain of sand.
Fig. 1. The gibber plains of the Sturt Stony Desert in South Australia which Thomas

et al. (2005) has proposed as an analogue of deflation surfaces imaged at Chryse

Planitia by the Viking 1 lander.
Nanocrystals were identified with a distinctly hexagonal shape
that is strongly indicative of hematite, which has recently been
detected by the Mars Exploration Rover Opportunity at Meridiani
Planum (Calvin et al., 2008). A very small amount of hematite
nanocrystals could be responsible for the intense red colour of the
dune sand at Kata Tjuta/Mt Olga, Northern Territory.

Greeley and Williams (1994) have also proposed ‘parna’ as an
analogue of dust deposits on Mars. ‘Parna’ is an Aboriginal word
meaning ‘sandy and dusty ground’ and describes a hybrid aeolian
deposit consisting of a mixture of sand, silt and clay. Parna
deposits, also know as desert loess, occur in many parts of
Australia (Haberlah, 2007; Haberlah et al., 2007) and several
possible sites on Mars that may be similar to the Australian
deposits have been identified by Greeley and Williams (1994).
Understanding sediment sources, transport distances and me-
chanisms and the ages of dune fields in Australia also has
implications for understanding similar features on Mars.

Mars also contains many examples of streamlined erosional
wind forms, known as yardangs, that are similar in form to
inverted boat hulls (Ward, 1979; Fergason and Christensen, 2008).
In terrestrial deserts yardangs can range in length from meters to
kilometers but despite Australia’s extensive deserts and eolian
features, few good examples are known (Goudie, 2007). The
consensus in the literature is that Australia’s deserts are not
characterised by extremely low rainfall (less than 50 mm per
annum) and there is not sufficient transport of materials (Goudie,
2007). Some very small examples are known at Lake Mungo in
New South Wales and the examples at the Gurra Gurra dunes
discussed by Bishop (1997) as a Mars analogue are very ephemeral
and could not be found by an expedition investigating Mars
analogues in the region in 2004 (Clarke et al., 2006).

2.3. Desert flood outs

Flood outs are very low-relief, unconfined, and fine-grained
depositional features that form at the distal end of arid rivers
where they discharge into dune fields or playas. They form the
termini of major rivers such as the Finke and the Todd in inland
Australia. Unlike the better defined coarse-grained alluvial fans
deposited proximal to high-relief features (Waclawik and Gostin,
2006) (and also found on Mars, see Howard, 2007), flood outs are
often poorly defined and can extend considerable distances (many
hundreds of kilometers) from the range fronts in which the
ephemeral streams have their source. Flood outs in central
Australia were postulated by Bourke and Zimbelman (1999,
2000, 2001) and Bourke (2003) as potential analogues for some
of the major channels on Mars that flow out onto and apparently
merge with the sedimentary cover of the northern plains of Mars
without obvious terminal fans. Although not specifically referring
to these studies, the observation by Howard (2007) that the
apparent scarcity of well developed fans on Mars may be due to
extremely fined-grained distal sediments suggests the utility of
analogues based on central Australian flood out deposits.
3. Impact craters

Australia’s arid climate, generally low-relief and long-term
tectonic stability has resulted in one of the best-preserved records
of terrestrial impact cratering that has been reviewed by (Glikson,
1996) and more recently by Haines (2005). The great age of the
basement rocks in the Australian craton means that the Proterozic
impact record is without peer and the density of impact sites is
similar to that of North America and parts of northern Europe
(Haines, 2005). Most known impact sites are located in Australia’s
arid interior and in easily accessible pastoral districts, suggesting
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Fig. 2. Craters 3 and 4 of the Henbury Meteorite Craters in the Northern Territory,

Australia. The rays (red lines; grey in print) and the outline of the ejecta blanket

(solid blue line; black in print), as described by Milton (1977), are shown. (Image

from Google Earth, Image copyright 2009 Digital Globe.)

Fig. 3. A small rayed impact crater, about 160 m in diameter, in the Tharsis region

of the northern hemisphere of Mars similar to that found at Henbury Meteorite

Crater in the Northern Territory, Australia. HiRISE Image: PSP_008011_1975

courtesy of NASA/JPL/University of Arizona.
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that more impact sites may yet be discovered in the even more
remote desert regions. This was recently demonstrated, for
example, by the discovery of the 260 m diameter Hickman Crater
in Western Australia, which was originally detected using satellite
imagery in Google Earth (Glikson et al., 2008). Australia’s impact
sites include some of the best-preserved small impact craters, a
crater field that includes a rayed crater, one of the most
thoroughly studied partially eroded complex impact structures
and possibly the world’s oldest preserved simple crater. Such
diversity provides plenty of scope for analogue studies of the
different impact cratering processes that occur on Mars as well as
at other locations in the Solar System such as on the Moon,
Phobos’ Stickney Crater or impacts on asteroids.

One of the best known impact structures, and the best studied
of Australia’s large impact structures, is Gosses Bluff in the
Northern Territory. A remarkable rock formation standing alone in
a nearly flat plain like a lone, circular mesa, Gosses Bluff is in fact
the central part of a highly eroded impact structure estimated to
be �24 km in diameter. The ring of hills �5 km in diameter is the
skeletal remains of the central uplift of the impact crater which
has been extensively eroded (Hodge, 1994). Gosses Bluff was
studied extensively in the 1960s by US Geological Survey workers
(Milton et al., 1972; Milton and Michel, 1977; Milton, 1977) in
order to establish the geological and geophysical techniques
required to confirm the origin of lunar craters investigated during
the Apollo program. For example, the discovery of abundant
shatter cones in the vicinity highlighted their importance as a
feature diagnostic of impact cratering (Milton et al., 1972). Our
understanding of structures such as Gosses Bluff can be applied to
and serve as exceptional analogues of processes that degrade the
original morphology of impact craters on Mars.

The Henbury Meteorite Craters in the Northern Territory is an
excellent example of a small crater field as shown in Fig. 2. Caused
by the atmospheric break up of an iron meteorite, the crater field
consists of at least 13 or 14 craters (the exact number is still
disputed) ranging in diameter from 6 to 180 m. The largest is an
elongated double crater caused by the explosion of two closely
related projectiles (Milton, 1977). One of the larger craters
displays well-developed down-range ejecta rays making it the
only terrestrial example of a rayed crater (Milton and Michel,
1977). The rays consist of ejected fragments of sandstone that are
similar to those identified on the Moon, Mercury and Mars
(Hodge, 1994). A rayed crater on a similar scale to that found at
Henbury has been imaged recently by the HiRISE camera aboard
the Mars Reconnaissance Orbiter (Fig. 3). Located in the northern
hemisphere Tharsis region, this crater is approximately 160 m in
diameter and displays rays of ejecta composed of fine material
that is markedly darker than the surrounding regolith. The ejecta
blanket also consists of large boulders and contains smaller
secondary craters.

Geomorphic studies of Henbury Meteorite Crater and Gosses
Bluff have been used to understand the complexities of fluvial
dissection in the heavily cratered terrains of Mars (Baker, 1984). At
Henbury, the impact craters have been modified by the semiarid
drainage system. The breaching of crater rims by gullies was
facilitated by the northward movement of sheetwash along an
extensive pediment surface extending from the Bacon Range.
South-facing crater rims have been preferentially breached
because gullies on those sides were able to tap the largest
amounts of runoff. At Crater 6, a probable rim-gully system has
captured the headward reaches of a pre-impact stream channel.
The interactive history of impacts and drainage development is
critical to understanding the relationships in the heavily cratered
uplands of Mars. Whereas the Henbury craters are younger than
4700 yrs B.P., the Gosses Bluff structure formed about 130 million
years ago. The bluff is essentially an etched central peak
composed of resistant sandstone units. Fluvial erosion of this
structure is also discussed by Baker (1981).

Zunil crater in the Cerberus Plains of Mars is one of the largest,
at 10 km in diameter, and best-studied rayed craters on Mars
(McEwen et al., 2005). The impact created several million
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secondary craters ranging in size from 10 to 200 m in diameter
that are concentrated in radial streaks that extend up to 1600 km
from the primary crater. The Acraman impact structure in South
Australia and the associated distal ejecta are a good terrestrial
example of the large scale distribution of ejecta material observed
at Zunil crater. At 160 km in diameter, Acraman is Australia’s
largest impact structure and led to the formation of a subcircular
playa lake with islands (Lake Acraman). Distal ejecta deposits
have been confidently linked to the impact and can be traced out
to distances as far as 540 km from the impact site, although no
secondary craters have been observed. A 40 cm thick layer of
clasts �30 cm in diameter is well exposed in the Bunyeroo
Formation in the Flinders Ranges, about 300 km to the east of
Acraman (Gostin et al., 1986; Williams and Gostin, 2005).

Aside from the smallest craters of the Henbury crater field,
Dalgaranga in Western Australia is Australia’s smallest confirmed
impact crater with a diameter of only 24 m and a depth of 3 m
(Bevan, 1996). It is also the only known impact caused by a
mesosiderite stony-iron projectile (Nininger and Huss, 1960). On
Mars, impacts as small as 10 cm in diameter have been imaged by
the Mars Exploration Rover Opportunity on the plains of Meridiani
(Schröder et al., 2008) and the Mars Pathfinder mission produced
evidence of craters less than 1 m in diameter (Hörz et al., 1999).
Such small craters are possible because of Mars’ low atmospheric
pressure, which admits projectiles without them burning up in
the atmosphere before impacting the surface.

Lindsay and Brasier (2006) have recently suggested that the
18 km diameter Lawn Hill Structure in northern Australia may also
prove a useful martian analogue. This structure contains a
significant fill of sedimentary carbonate rocks that preserve the
stratigraphic record within the floor of the crater. In a similar way,
eolian sediment on Mars is trapped inside impact craters. If water
resources were present, the floors of such craters on Mars may
have in the past acted as suitable habitats for life. Lindsay and
Brasier (2006) note that numerous small to medium impact
craters like the Lawn Hill Structure exist on Mars and have clearly
defined flat floors, suggesting they contain a sedimentary record.
If this were so, such craters would be among the best locations to
drill in search of evidence of a martian biosphere, if it is there to
be found (Cockell and Lee, 2002).
4. Analogues of hydrothermal systems

4.1. Mount painter, South Australia

The Mount Painter hydrothermal system (Coates and Blissett,
1971) is located in the Arkaroola region of the Flinders Ranges,
South Australia. The site is of particular value because of its close
association with several significant Mars analogue terrains that
are collectively known as the Arkaroola Mars Analogue Region
(Clarke et al., 2004). Mount Painter is a Paleozoic hematite
hydrothermal system with excellent surface and vertical exposure
(Foster et al., 1994). Many of the systems are radioactive and could
provide niches for radioactive resistant extremophiles, similar to
those at the modern Paralana hot springs (Anitori et al., 2002).
Stromatolitic horizons are located in the Neoproterozoic sedi-
ments (Coates and Blissett, 1971) in the surrounding region and
veins containing possible microfossils of deep-Earth microbes
(Bons et al., 2009) have been reported.
4.2. The Pilbara region, Western Australia

The Pilbara Craton of Western Australia is one of the oldest and
best-preserved sedimentary and volcanic successions in the
world. The rocks of the Warrawoona Group were deposited
between 3.2 and 3.5 billion years ago and are dominated by well-
preserved thoeleitic and komatiitic volcanic successions, which
have been suggested as an analogue for the flood basalts of Mars
(Brown, 2004, Brown et al., 2004a–c). The minimal tectonic
metamorphism makes these rocks very attractive for searches for
biosignatures. In addition, the presence of Earth’s earliest
convincing biosignatures in the abundant stromatolites, micro-
fossils and isotopic signatures at North Pole Dome (Schopf et al.,
2007; Walter et al., 1980; Allwood et al., 2006, 2007; Van
Kranendonk, 2006) makes it an ideal proving ground for strategies
to find past life on Mars.

The hydrothermal activity at North Pole Dome is characterised
by low-temperature, low-pressure epithermal fluid flow and is
most pervasive at the top of the Dresser Formation. Brown et al.
(2005) note that epithermal alteration events, such as that at
North Pole Dome, on the flanks or distal regions of high-
temperature hydrothermal sites would have been suitable to
nurture biological activity on Mars. The search for biosignatures in
hydrothermally altered terrains on Mars will focus upon regions
that include contacts between varying alteration mineralogies
such as veins or lineaments of specific alteration types. Examples
on the surface of Mars of such hydrothermal activity include
crater rims, volcanic edifices, gullies created by hydrothermal
activity and shallow intrusions exposed by cratering (Oehler and
Allen, 2008; Squyres et al., 2008). North Pole Dome is a good
example of a shallow hydrothermal system and has proved to be a
useful analogue for testing several detection techniques, which
are discussed further below.
4.3. Hyperspectral mapping of hydrothermal systems

For the purpose of analogue studies, there are many remote
sensing techniques that can, and are being used to study and map
Mars’ geology. Testing these methods on analogues on Earth
allows protocols to be developed that can be applied to future
robotic or manned Mars missions. Previous analogue studies
include the application of spectral remote sensing techniques and
hyperspectral methods to map the geology and characteristics of
hydrothermal systems (Thomas and Walter, 2002; Thomas et al.,
2002). Such systems can be detected and mapped using spectro-
scopy and in particular hyperspectral methods, since their
weathering products usually have good exposure and are
spectrally distinctive. For example, the Australian-built Portable
Infrared Mineral Analyzer (PIMA) has been used to ground truth
hyperspectral data obtained by the airborne HyMap instrument at
both Mt Painter and North Pole Dome (Brown et al., 2004a, b;
Storrie-Lombardi et al., 2004). These datasets have been augmen-
ted with satellite derived LandSAT and ASTER data.

At Mount Painter the resulting hyperspectral maps show
distinctive areas of mineralisation commonly associated with
the Paralana Fault zone (Thomas and Walter, 2002; Thomas et al.,
2002; Brown, 2004). The Paralana fault zone is still likely to be the
most prolific and active hydrothermal fluid conduit in the region,
but mineralogical and hyperspectral evidence suggest it is not the
only hydrothermal system present. Both the HyMap and PIMA
hyperspectral data give evidence for two different hydrothermal
fluids being responsible for the interpreted mineral variations.
These hydrothermal fluids have resulted in ore-grade mineralisa-
tion, both here and at the nearby Mt Gee, and may be good
analogues for similar hydrothermal mineralisation recently
postulated for Mars (West and Clarke, 2010). Similarly, hyper-
spectral mapping has revealed new details about the nature of
hydrothermal alteration within the Dresser Formation of North
Pole Dome (Brown et al., 2004a, 2005, 2006) and work in both
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these regions has demonstrated techniques that can be adapted to
hyperspectral datasets currently being acquired at Mars by the
OMEGA and CRISM instruments (Ehlmann et al., 2008).
Fig. 4. (A) An example of an inverted channel from Western Australia (213460S,

1153590E). According to Macphail and Stone (2004) and Morris and Ramanaidou

(2007), the cementing agents are goethite and hematite, which results in broad

mesas covered in ferricrete where the former river flowed. The mesas is now being

eroded by slope processes and material is being removed by streams. (Image from

Google Earth, Image copyright 2008 Digital Globe.) (B) An example of inverted

channels from the Eberswalde delta on Mars. Stream channel features can easily be

seen on the tops of the mesas that are now in inverted relief. The cementing agent

is unknown, but the mesas are likely to be eroded by slope processes, and the

material is probably being removed by wind (Pain et al., 2007). (Image from MGS

MOC Release No. MOC2-1225, 20 September 2005, subset of image MOC2-1225a.)
5. Relief inversion analogues

Inversion of relief on Earth occurs when a low part of the
landscape is in some way protected from erosion or becomes
resistant to erosion. As the landscape evolves the unprotected and
less resistant parts are eroded to leave the more resistant lower
parts standing higher in the resulting landscape. Pain and Ollier
(1995) reviewed inversion of relief as a component of landscape
evolution on Earth and provided many examples.

On Earth, relief inversion commonly occurs when a valley floor
becomes a ridge or flat-topped mesa. This can occur in volcanic
areas when lava flows down a valley, filling it partially or
completely. Drainage re-establishes itself as twin lateral streams
flowing down each side of the lava flow, and the lava that was
once on the valley floor becomes a ridge or elongated mesa
between two valleys. Usually, alluvial deposits on the original
valley floor are preserved beneath the lava flow, and are exposed
on the sides of the ridge or mesa. If enough time has elapsed since
the flow, the former valley floor may be preserved only as isolated
lava-capped hills.

In all landscapes, elements are taken into solution and move in
subsurface flow down slopes and depressions to the lowest parts
of the landscape. Some environments favour the precipitation of
these elements in valley floors, and when this occurs, the
materials on valley floors and other low areas become cemented
to form duricrusts. Duricrusts cemented by calcium carbonate are
called calcretes; by iron, ferricretes; by gypsum, gypcretes; and by
silica, silcretes. Note that the cementing is a modification of the
material present in the valley floors. Most commonly this will be
alluvium, but adjacent weathered bedrock and slope deposits are
also often cemented.

5.1. Australian relief inversion analogues

There are many terrestrial examples of calcareous or iron-
cemented alluvium leading to inversion of relief (Pain and Ollier,
1995). In semiarid regions, such as in central Australia, calcium
carbonate may be deposited along stream lines. When this is
hardened into a calcrete, it may act like a lava flow, becoming less
erodable than the neighbouring valley sides. New streams then
form lateral to the calcrete, and eventually cause inversion of
relief. The same happens with iron and silica cementing. Ferricrete
and silcrete are especially resistant to erosion, and the inverted
channels can persist either as ridges or as isolated mesas long
after the surrounding landscape has completely changed its
character (Fig. 4A). Fig. 5 shows one of the most visually
stunning examples of inverted relief in Australia, the mesas of
the Painted Desert near Arkaringa, South Australia (McNally and
Wilson, 1995).

In many cases, inverted channels contain information about
environments that existed in the past, but are not present today.
For example, Macphail and Stone (2004) and Morris and
Ramanaidou (2007), studying the inverted channel deposits in
the Pilbara region (Fig. 4A), show that the climate may have been
wet subtropical rather than dry as it is at present.

5.2. Relief inversion on Mars

Relief inversion is also common on Mars (Pain et al., 2007).
Although it is difficult to be sure, at least some inverted channels
may be explained by lava flows. Others (e.g. Fig. 4B) appear to be
caused by cementing of valley floor deposits, although the
cementing agent is unknown. Explanations of inversion of relief
on Mars are drawn largely from analogues on Earth. This is
because, in common with many other features on Mars, the
identification of materials is not yet possible at an appropriate
scale except for the very limited areas visited by landers and
rovers. However, it seems likely that, in common with Earth, some
channels on Mars have been filled with lava flows, after which
twin lateral streams formed. Similarly, valley floor materials on
Mars have become cemented, and later eroded giving rise to
landforms very similar to those on Earth.
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Fig. 5. The mesas of the Painted Desert near Arkaringa. Fig. 6. Stromatolites in the intertidal zone of Hamelin Pool, Shark Bay, Flagpole

Landing. Photographs courtesy of Falicia Goh.
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The cementing agents on Mars are not known but based on
observations by orbiters and landers, there are several possibi-
lities. These include sulfates (jarosite, gypsum, keiserite), iron
oxides (haematite) and allophane (amorphous clay-like phases)
(Clark et al., 2005). Halide salts and amorphous silica (opal), are
also likely (Osterloo et al., 2008; Milliken et al., 2008).
6. Hypersaline embayments

One of the best examples of modern analogues of early
microbial life on Earth is the existence of living stromatolites.
These are organo-sedimentary structures formed by the interac-
tions of benthic microbial communities with their environment.
By extension, they are often considered as the sort of structures
that should be targeted in any search for former life on Mars
because although built by microbes, they can be as large as the
largest reefs on Earth. Among the most extensive modern
stromatolites are those forming in Hamelin Pool, a hypersaline
marine environment that is part of Shark Bay on the western coast
of Australia (Logan, 1961; Logan et al., 1974; Playford and
Cockbain, 1990; Burns et al., 2009).

The living marine stromatolites of Hamelin Pool are the most
diverse, abundant, and widespread examples known (Fig. 6). The
salinity is up to twice that of normal seawater (Arp et al., 2001;
Burns et al., 2004) and the relatively thin atmospheric ozone layer
contribute to a high ambient UV irradiance (Palmisano et al.,
1989). This relatively low ozone contributes to the value of Shark
Bay stromatolites as modern analogues of early life on Earth and
possible former life on Mars (Walter and Des Marais, 1993; Des
Marais and Walter, 1999). Abundant fossilised stromatolite reefs,
formed in ancient hypersaline embayments, can also be found in
the Pilbara region of Western Australia mentioned earlier (Schopf
et al., 2007; Walter et al., 1980; Allwood et al., 2006, 2007; Van
Kranendonk, 2006).
7. Acid lake analogues

7.1. Potential acidity on Mars

Burns (1987) speculated that acid waters on Mars were
responsible for the spectral signatures of jarosite ((KFe3ðOHÞ6
ðSO4Þ2) and schwertmannite (Fe16O16ðOH; SO4Þ12213 � 10212H2O).
He later suggested (Burns, 1993) that acidic groundwater in
southern Australia (Mann, 1983; McArthur et al., 1991) might be
valuable analogues for such environments, as was the history of
that acidity in the context of the long-term landscape evolution
from humid to arid environments (Clarke, 1998). This insight
was supported by the theoretical work of Clark (1994) and verified
by the discovery of jarosite by the Mars Exploration Rover
Opportunity at Meridiani Planum (Klingelhofer et al., 2004).
Despite the early recognition of Australian acidic Mars analogues,
it was more than 10 years before the first systematic studies
explored their significance.
7.2. Western Australian acid lake systems

Detailed studies have been carried out on a group of small, acid
lakes on the Yilgarn Craton. The lakes have pH values of between
1.7 and 4. Sand and mud flats, formed at low points in the
landscape, are flooded by surface runoff and groundwater
discharge. On the surface and in the sedimentary pore spaces
these sand and mud flats precipitate a mineral assemblage that
consists of halite, gypsum, kaolinite, iron oxides, jarosite, and
alunite (Benison et al., 2007a, b). Benison and Bowen (2006) and
Benison et al. (2007a, b) suggest that these sediments are close
analogues to the depositional and diagenetic facies of the Burns
Formation studied by the Mars Exploration Rover Opportunity on
Mars (Grotzinger et al., 2005). Mormile et al. (2003, 2007),
Benison and Laclair (2003) and Benison et al. (2007a, b)
investigated the biota in these lakes and their preservation
potential as analogues for possible life on Mars. They were
particularly interested in how such biota might be recognised by
future explorers. Schaefer et al. (2003) has also suggested that the
formation of hematite concretions in these lakes could be
compared with iron minerals found on Mars, such as the hematite
concretions of Meridiani Planum (Benison et al., 2007a, b; Bowen
et al., 2007, 2008).

In addition to the studies cited above, a hyperspectral survey of
the Yilgarn Craton has been carried out using the airborne HyMap
instrument and supplemented by ASTER imagery (Brown and
Cudahy, 2006). Large deposits of gypsum were detected remotely
in the evaporite deposits of the dry lakes that criss-cross the
region. These results have been compared to measurements made
by the OMEGA instrument of sulfate deposits in the martian North
Pole region. Since the ultramafic-mafic volcanic flows of the
Yilgarn Craton are a good analogue for the volcanic flood basalts of
Mars, detection of sulfate deposits against this backdrop is
important to understanding what the most likely minerals are
in a basaltic acid weathered region and how to detect them on
Mars with orbiting instruments.
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Other salt lakes and groundwater systems in Western Australia
may also be potential Mars analogues. Very recently a range of
MgCl2 and MgSO4 minerals have been discovered in natural and
anthropogenically perturbed systems near Lake Deborah (Shand
and Degens, 2008). Given the predominance of Mg and sulfate
rich sediments in the Burns formation at Meridiani Planum on
Mars, the discovery at Lake Deborah of precipitation sequences
from near neutral to acid, consisting of magnesite (MgCO3), halite
(NaCl), gypsum (CaSO4:2H2O), starkeyite (MgSO4 : 4H2O) and
carnallite (KMgCl3 : 6H2O), is of particular interest. Further work
is required to assess the Mars analogue potential of these sites and
the relevance of these acid lakes and groundwater systems to the
precipitation sequences found on Mars.

7.3. Other acid systems

Lake Tyrrell in Victoria (Fig. 7) is a near neutral salt lake that is
fed by local springs with moderate to low pH (3–6.1) (Macumber,
1992). Lake Tyrrell is a groundwater discharge complex, or boinka,
and is the first and best-studied naturally occurring acidic lake
and groundwater system in Australia (Long et al., 1992a, b). The
system was proposed as a possible Mars analogue by Benison et al.
(2007a, b) although the waters are not as concentrated and at
higher pHs than those observed in Western Australia (Bowen and
Benison, 2009). While it is unreasonable to expect martian surface
environments to be strongly acidic everywhere, as shown by the
recent results from the Phoenix lander where the soil pH is
8:370:5 (Kounaves et al., 2009), such moderate to slightly acidic
saline environments such as Lake Tyrrell may still be applicable as
analogues to many ancient martian environments. The weakly
acidic lakes and boinka complexes of the Eyre Peninsula (Kimber
et al., 2002) may also have Mars analogue potential, but further
work is required to assess their value.

Bloethe (2008) has recently investigated iron bacteria in the
southern acidic end of Lake Tyrrell. Here the nearly constant pH of
�4 is conducive to both Fe(II) oxidation and Fe(III) reduction.
Analysis of the lake sediments revealed low but detectable
populations of two different aerobic halophilic Fe(II)-oxidising
organisms. The results suggest that a coupling of microbial Fe
oxidation and reduction may take place in these acidic and Fe-rich
sediments. This process may provide a model for how microbially
catalysed Fe-redox cycling under hypersaline conditions could
occur in subsurface martian environments where fluids and solids
Fig. 7. Ironstone precipitates and iron-stained acid seeps along the shores of Lake

Tyrrell, Victoria. The lake floor is essentially the outcropping groundwater surface

of the regional aquifer (Long et al., 1992a, b).
contact oxidant-bearing water or water vapour. This phenomenon
has also been investigated at other Mars analogue locations, such
as Rio Tinto in Spain (Davila et al., 2008; Amils et al., 2007).

7.4. Acid systems in the context of landscape evolution

Much of the work on acid minerals on Mars has assumed that
the acidity indicated by the presence of jarosite and similar
minerals was a primary condition of the depositional environ-
ments (Klingelhofer et al., 2004; Grotzinger et al., 2005; Benison
and Bowen, 2006). However, as Burns (1993) recognised, the
presence of minerals indicative of acid conditions may be
superimposed on materials formed under very different condi-
tions. Indeed, as shown by Clarke (1998), aridity (and acidity) is a
very recent phenomenon in the landscape and sedimentary
evolution in the Western Australian salt lakes. The lakes
themselves occur in landscapes dominated by calcareous weath-
ering (Mann, 1983; McArthur et al., 1991), indicating that
carbonate minerals and active acid weathering processes can
coexist in close proximity. As the actual mineral paragenetic
sequence in the complex sediments of Meridiani Planum is still
unknown, much may still be gained in understanding the martian
surface from studying the precipitation sequences of sedimentary
and weathering environments in the acid lake systems of
southern Australia.
8. Mound spring complexes

Mound springs form when artesian water discharges at the
surface and builds up a mound of deposited material. The height
of the mound is equivalent to the hydraulic head of the artesian
basin. Such mounds are widespread through the Great Artesian
Basin (GAB) of Australia (Krieg, 1985) and their deposits provide
important insights into the past and present hydrology and
climates of artesian basins and preserve records of the environ-
ments at the point of discharge.

8.1. Dalhousie springs complex

The Dalhousie Springs Complex (DSC) is significant because it
is one of the largest and best expressed spring complexes on Earth
and is relatively accessible compared to the springs of the
Canadian High Arctic, for example (Pollard et al., 1999; Grasby
et al., 2003). The DSC occurs at the margins of the GAB which
underlies 22% of the Australian continent and covers
1:7 million km2. The complex consists of a cluster of more than
60 active springs formed by natural discharge from the GAB
(Habermehl, 2001). A complex mosaic of active and ancient spring
deposits and channels is spread over about 1500 km2 and the
springs occur in a core zone of �150 km2. The discharged artesian
waters are of low to moderate salinity (700–9400 ppm), near
neutral pH (6.8–7.3) and warm to hot (20–80 1C). The elevated
temperatures are due to passage of the groundwater through
deeply buried (up to 3 km) aquifers. The waters also contain
high levels of dissolved iron and H2S and o1 ppm dissolved
oxygen. The main aquifers of the GAB are the Late Jurassic
Algebuckina Sandstone and earliest Cretaceous Cadna-owie
Formation, confined by the aquaclude of the Cretaceous Bulldog
Shale. The aquifers are brought near the surface by the
mid-Cainozoic Dalhousie anticline and the groundwater flow
focused along a series of faults that breach the anticline’s crest
(Krieg, 1985).

Springs begin as rimmed pools with outflow channels (Fig. 8A)
and evolve through sediment baffling and precipitation into
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Fig. 8. The Dalhousie springs complex. (A) Aerial view of a spring pool. Note the

sinuous, vegetation-rimmed discharge channel. (B) A small mesa formed by the

erosion of a former pool leaving behind a carbonate cap.
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mounds. When spring flow decreases, the mounds are eroded to
form carbonate-capped mesas (Fig. 8B). Outflow channels also
precipitate carbonate and, when abandoned and eroded, can form
elongate ridges through relief inversion.

As a result of ascending non-supersaturated water, the DSC is a
carbonate-limited precipitation system and, to date, has been
poorly described. Fourteen specific microfacies belonging to seven
facies have been identified (Clarke et al., 2004). These were
deposited in environments ranging from cool to hot springs. Pool,
marsh, and outflow channel environments can be recognised from
detailed textures. Diagenesis has occurred in several stages. From
oldest to youngest these are: phreatic diagenesis during initiation
and main discharge of the spring; vadose zone diagenesis during
the waning of spring discharge; and a range of pedogenic
overprints by clays, sulphates, and iron oxides-hydroxides in
remnant cavities. The overprinting of primary pool facies with, for
example, fluvial, pedogenic and groundwater facies suggests that
detailed textures of spring deposits can yield information on the
diverse range of processes involved in the formation of the spring
mounds. These textures may be readily apparent at the resolution
provided by microscopic imagers on current Mars lander and
rover missions (Clarke and Bourke, 2009).
8.2. Implications for Mars analogue research

The martian surface exhibits many small dome, mound and
pitted cone features. These may represent volatile release from
the subsurface by processes such as mud volcanism or mound
spring formation (Crumpler, 2003; Farrand et al., 2005; Skinner
and Tanaka, 2007). Terrestrial spring deposits have a wide range of
morphologies, yet there are few published accounts of their
characteristics and formation. This inevitably limits our ability to
accurately detect these features on Mars from either satellite or
lander perspectives. Detailed characterisation of sites such as the
DSC will potentially assist in recognition of such features on Mars.
The DSC was evaluated for its Mars analogue potential during
the Jarntimarra expedition in 2001 (Mann et al., 2004) and the
results from the reconnaissance were presented by Clarke and
Stoker (2003). Bourke et al. (2007) published a preliminary
geomorphic analysis of the DSC and compared the results to a
number of small martian features not previously linked to
possible spring formation. The morphometric data presented
improved the ability to identify potential spring deposits on Mars
from satellite platforms. It has been shown that the preserved
form can be as domes, pitted cones, or mesas, which suggests that
the range of morphologies assigned to potential spring deposits
on Mars can be extended beyond cone-shapes. The data suggest
that mound spring sediments have high preservation potential.
Furthermore, spring complexes and their outflows form a
characteristic suite of sedimentary fabrics readily identifiable at
the small and microscopic scale. These findings are being used to
build and improve models of mound spring formation and spring
discharge on Earth and on Mars. Modeling of the hydraulic
properties of DSC mounds by Nelson et al. (2007) has been used to
predict past and present hydrological parameters based on the
mound spring morphologies. If mound springs can be correctly
identified on Mars, models such as this could be used to infer the
hydrogeological history of the region on Mars.

Petrographic studies of the DSC carbonate sediments (sum-
marised in Clarke et al., 2007) recognised a set of distinctive
megascopic and microscopic textures that can be used to
recognise spring deposits in the field. Although martian features
are unlikely to be carbonate deposits like most of the spring
mounds on Earth, they may represent other water-deposited
minerals such as sulphates, sulphides, silica, and iron oxides or
oxy-hydroxides. The generic processes described for mound
spring formation and evolution above would still apply for these
different types of deposits.

Recently Rossi et al. (2008) have suggested that large-scale
spring deposits, such as Dalhousie, may have formed the various
enigmatic light-toned deposits on Mars. Images from the HiRISE

camera have shown spring-like features in Vernal Crater, Arabia
Terra that have a striking similarity to those at Dalhousie (Oehler
and Allen, 2008, Allen and Oehler, 2008a, b). Squyres et al. (2008)
also report silica-rich deposits from a former hydrothermal spring
in Gusev crater, identified by the Mars Exploration Rover Spirit.
Given the level of information that hydrothermal spring deposits
contain about hydrology and climate, and their habitat potential
and micro-organism preservation potential, such sites have been
proposed as potential targets for future Mars sample return
missions (Walter and Des Marais, 1993; Allen and Oehler,
2008a, b; Oehler and Allen, 2008).
9. Deep weathering analogues

Deep weathering, that is, the creation of a thick weathered
layer through strong and/or sustained chemical weathering, is not
normally considered significant on Mars. This is based on the
current low temperature and arid surface environment that has
persisted through much of the Amazonian and perhaps earlier
(Bibring et al., 2006). The widespread occurrence of olivine
(Mustard et al., 2005) and low temperatures recorded in some
martian meteorites (Shuster and Weiss, 2005) at the surface
suggest limited alteration of primary basaltic mineralogy. How-
ever, onion skin weathering patterns (Thomas et al., 2005)
indicate that locally intense weathering is present and the recent
report by Ehlmann et al. (2008) of kilometer-scale outcrops of
magnesium carbonate associated with nontronite (iron-rich
smectite clays) strongly suggests the action of low temperature
aqueous alteration of ultramafic rocks in weathering, lacustrine
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and groundwater environments. Possible Australian analogues
include the magnesite deposits at Kunwarara, Thuddungara and
Arthur and Lyons Rivers which formed via the precipitation of
magnesite from magnesium carbonate rich waters sourced from
the weathering of local ultramafic rocks (Milburn and Wilcock,
1990; Diemar, 1990; Dickson, 1990).
10. Future work

Australia also contains examples of other features relevant to
Mars such as polygonal landforms, debris taluses and aprons,
gully forms and a variety of volcanic fields. To date no work has
been undertaken to assess their Mars analogue potential and
these should be pursued by future researchers. The Arkaroola
Mars Analogue Region in particular contains a wide variety of
features and geological systems that require further study. These
include the major alluvial fan systems that occur along the range
front of the Flinders Ranges and drain into the surrounding salt
lakes and the dune fields on the margins of the Strezlecki Desert.
Some preliminary geomorphological investigations have been
undertaken by Waclawik and Gostin (2006) but further work is
required as these surfaces, duricrusts and sediments provide
analogues for many complex landforms likely to be found on
Mars. Preliminary work by Heldmann et al. (2006) has used
remote sensing data sets and ground-truthing measurements
collected on site to investigate 11 springs and water holes in the
Arkaroola Mars Analogue Region. Given the importance of water
to the geomorphology of Mars’ surface, to the past and present
possibility of life and the availability of resources for human
exploration, further studies of the radioactive Paralana Hot Spring
mentioned above, the aquifers of Lake Frome that contain
uranium deposits and the numerous salt lakes formed by the
combination of run-off and shallow ground water discharge
would be beneficial. Other investigations in the region could
search for extremophile populations in the radioactive minerals of
the Mt Painter complex, in the high temperature (490 3C) artesian
bores of the region or the surrounding salt lakes, which are all
unexplored. All these studies could shed light on the dynamics of
such systems and how possible equivalents could be identified on
Mars.
11. Conclusion

Australia has many locations and landforms that can be
studied to understand the geological processes observed or
inferred on Mars. Australia’s unique combination of aridity and
ancient terrains have preserved numerous impact structures that
are type examples for understanding impacts as a geological
process, whether that be on Mars or in the Solar System generally.
The deserts of central Australia host many examples of stony
pavements and duricrust plains similar to those imaged on Mars’
surface and large dune fields and desert flood outs like those
imaged from Mars orbit. The sandy and dusty ground and dune
field sands also have a visual and compositional likeness to Mars’
regolith and provide insights into aeolian processes on Mars.

Several Australian examples of relief inversion have been
identified and their value as analogues of relief inversion on Mars
outlined. Recent studies, including hyperspectral mapping by
remote sensing instruments, of the Mt Painter and North Pole
Dome hydrothermal systems have been reviewed and parallels
between these systems and those postulated on Mars made.
The analogue potential of hypersaline embayments such as
Hamelin Pool in Shark Bay and the acid lake systems of Western
Australia and other Australian acid and salt lakes has been
discussed and areas for further research identified. The geology of
the Dalhousie Springs Complex, one of the largest and best
examples of a spring complex on Earth, has been reviewed and the
implications for Mars analogue research, including the evidence
for such systems on the surface of Mars, have been discussed.
Deep weathering of mafic and ultramafic rocks has produced
weathering profiles that may mimic those formed in earlier,
wetter epochs of martian history. Finally, opportunities for future
research have been detailed including in the Arkaroola Mars
Analogue Region.
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