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Abstract

The oxidation state of the atmosphere and oceans on the early Earth remains controversial. Although it is accepted by
many workers that the Archean atmosphere and ocean were anoxic, hematite in the 3.46 billion-year-old (Ga) Marble Bar
Chert (MBC) from Pilbara Craton, NW Australia has figured prominently in arguments that the Paleoarchean atmosphere
and ocean was fully oxygenated. In this study, we report the Fe isotope compositions and U concentrations of the MBC, and
show that the samples have extreme heavy Fe isotope enrichment, where d56Fe values range between +1.5& and +2.6&, the
highest d56Fe values for bulk samples yet reported. The high d56Fe values of the MBC require very low levels of oxidation and,
in addition, point to a Paleoarchean ocean that had high aqueous Fe(II) contents. A dispersion/reaction model indicates that
O2 contents in the photic zone of the ocean were less than 10�3 lM, which suggests that the ocean was essentially anoxic. An
independent test of anoxic conditions is provided by U–Th–Pb isotope systematics, which show that U contents in the Paleo-
archean ocean were likely below 0.02 ppb, two orders-of-magnitude lower than the modern ocean. Collectively, the Fe and U
data indicate a reduced, Fe(II)-rich, U-poor environment in the Archean oceans at 3.46 billion years ago. Given the evidence
for photosynthetic communities provided by broadly coeval stromatolites, these results suggests that an important photosyn-
thetic pathway in the Paleoarchean oceans may have been anoxygenic photosynthetic Fe(II) oxidation.
� 2013 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The evolution of photosynthesis was a critical evolution-
ary step in the history of life on Earth (e.g., Canfield, 2005).
It has been proposed that anoxygenic photosynthesis pre-
ceded oxygenic photosynthesis (e.g., Hohmann-Marriott
and Blankenship, 2011), in part because the Archean atmo-
sphere and oceans of Earth are generally considered to have
been anoxic, and also because anoxygenic photosynthesis is
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deeply rooted in the 16s rRNA tree of life (Xiong et al.,
2000). The first rise in atmospheric oxygen, termed the
“Great Oxidation Event” (GOE), has been proposed to
have occurred between �2.45 and 2.2 Ga (Holland, 1984,
2006). The GOE model was developed based on geologic
occurrences of detrital pyrite, siderite, and uraninite in sed-
iments deposited before the GOE, as well as retention of Fe
in paleosols after the GOE (Holland, 1999), amongst other
geological observations, although some workers have ar-
gued for a much earlier oxygenation of the atmosphere
(e.g., Hoashi et al., 2009). Support for the GOE at
�2.4 Ga comes from the disappearance of mass-indepen-
dent fractionation of S isotope after the GOE (Farquhar
et al., 2000). Recent geochemical studies, however, increas-
ingly provide evidence for a more complex evolution of
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atmospheric O2 levels prior to the GOE as compared to a
simple “step-function” (Anbar et al., 2007; Kaufman
et al., 2007; Wille et al., 2007; Garvin et al., 2009; Godfrey
and Falkowski, 2009; Ono et al., 2009; Duan et al., 2010;
Kendall et al., 2010; Voegelin et al., 2010; Czaja et al.,
2012; Reinhard et al., 2013).

Attempts to constrain the evolution of oxygenic photo-
synthesis have been controversial. For example, the timing
of the evolution of oxygenic photosynthesis has been par-
tially constrained to �2.7 Ga, based on molecular biomark-
ers (Brocks et al., 1999; Eigenbrode and Freeman, 2006;
Eigenbrode et al., 2008; Waldbauer et al., 2009), although
this line of research has been highly controversial (e.g. Ras-
mussen et al., 2008). Large microfossils of 3.4–3.1 Ga age
have been interpreted to be possible eukaryotes or possible
cyanobacteria, which, if confirmed, would suggest an even
earlier origin for oxygenic photosynthesis (Sugitani et al.,
2007, 2010; Javaux et al., 2010). Other researchers point
to geological evidence that may indicate stillearlier oxygen-
ation of the atmosphere, and therefore, a very early appear-
ance of oxygenic photosynthesis. For example, hematite in
the 3.46 billion-year-old (Ga) Marble Bar Chert Member
(MBC), and in the stratigraphically younger Apex Basalt,
from Western Australia, has been interpreted to reflect an
O2-bearing Archean ocean and atmosphere in the Paleo-
archean (Hoashi et al., 2009; Kato et al., 2009). Other
workers have disagreed with an early timing of oxidation
for the hematite-bearing Apex Basalt (Li et al., 2012).

In this study, we focus on the origin and paleo-environ-
mental significance of hematite from the 3.46 Ga Marble
Bar Chert Member (MBC) of the Duffer Formation, from
the Pilbara Craton, Western Australia (Van Kranendonk
et al., 2007b). Hoashi et al. (2009) interpreted hematite in
the MBC to have precipitated from a fully-oxygenated Ar-
chean ocean at the time of deposition at 3.46 Ga, which in
turn would suggest that oxygenic photosynthesis had
evolved prior to that time. Alternatively, Van Kranendonk
et al. (2008) suggested that hematite in jaspilitic chert from
the conformably underlying ca. 3.48 Ga Dresser Formation
formed as a result of alteration of primary siderite during
circulation of high pH hydrothermal fluids. Here, we com-
bine Fe isotopes, which can constrain the extent of oxida-
tion, with U–Th–Pb isotopes, which provide an estimate
of seawater U contents as an independent measure of oxy-
gen abundance, and as a test for post-depositional alter-
ation of the host rocks. Our results indicate that hematite
in the MBC was precipitated by a very small extent of oxi-
dation from an Fe(II)-rich, U-poor ocean at 3.46 Ga. We
conclude that hematite in the 3.46 Ga MBC cannot be used
to infer an origin for oxygenic photosynthesis prior to
3.5 Ga.

2. GEOLOGICAL BACKGROUNDS AND SAMPLES

The Marble Bar Chert Member (MBC) member of the
ca. 3.46 Ga Duffer Formation is the most prominent chert
unit in the Warrawoona Group, which is the lowest strati-
graphic part of the well-preserved Pilbara Supergroup in
the Paleoarchean Pilbara Craton in northwestern Australia
(Van Kranendonk et al., 2002, 2007a) (Fig. 1). Thick suc-
cessions of pillow basalts and finely bedded cherts within
the Warrawoona Group indicate predominantly deep mar-
ine deposition (Van Kranendonk et al., 2007a). The MBC is
generally 100–200 m thick, and extends north–south for
over 120 km, west of the town of Marble Bar (Fig. 1).
The depositional age of the MBC is well constrained to
3.46 Ga by U–Pb zircon geochronology on conformably
underlying felsic volcanic rocks of the Duffer Formation
(Fig. 1; Van Kranendonk et al., 2007b). A bedding-parallel
shear zone that developed locally along the contact between
the MBC and the overlying Apex Basalt (Kato et al., 2009)
reflects the effects of tilting during tectonic deformation be-
tween 3.3 Ga and 2.9 Ga (Van Kranendonk et al., 2007a).
The MBC and Apex Basalt at Marble Bar were buried to
at least 3 km depth prior to 2.78 Ga, at which time they
were uplifted, eroded, and overlain by rocks of the Fortes-
cue Group. Phanerozoic uplift has once more exposed these
rocks to the effects of recent weathering (Thorne, 2001; Van
Kranendonk et al., 2007b).

Hematite-bearing chert layers (jasper) are abundant in
outcrops of the MBC (Appendix 1; Van Kranendonk,
2006, 2010). Van Kranendonk (2006) interpreted the jasper
layers to predate white chert within the MBC, as the latter
occur as cross-cutting veins or in situ replacement of the
hematite-bearing chert. However, the Australian continent
has been exposed to deep weathering since the Triassic
(Anand, 2005), which has produced weathering profiles that
are commonly 50–100 m deep in Western Australia (Anand
and Paine, 2002; Anand, 2005). A critical question, there-
fore, is the age of hematite formation in the MBC – is it
early Archean, or could it be Neoarchean or even
Phanerozoic?

The Archean Biosphere Drilling Project (ABDP) was
initiated with the goal of obtaining samples below surface
weathering zones, and the site for the first diamond drill
core from this program (ABDP-1) is located about 4 km
southwest of the town of Marble Bar (Fig. 1). The 260 m
deep drill core of ABDP-1 intersects basalts of the 3.474–
3.463 Ga Duffer Formation, the MBC, and the 3.46 Ga
Apex Basalt (Fig. 1). There are abundant hematite-bearing
bands in the drill core samples, even at depths greater than
100 m (Van Kranendonk, 2010).

The MBC samples analyzed in this study come from
drill core depths of 169 m and 176 m in ABDP-1 (Figs. 1–
3), and were sampled at the Geological Survey of Western
Australia, Perth. These samples were analyzed for U–Th–
Pb and Fe isotopes. In addition, we report new Fe isotope
data for the Apex Basalt samples analyzed for U–Th–Pb
isotopes by Li et al. (2012) from depths of 190–262 m,
which have been variably oxidized. A non-oxidized basalt
sample from the Duffer Formation at 42.6 m depth was also
analyzed (Fig. 1).

3. ANALYTICAL METHODS

3.1. Sample preparation

Sampling of chert was undertaken using a thin (0.2 mm)
diamond saw blade. For Fe isotope analysis, a small wedge-
shaped piece 1 � 1 mm in size was cut from a quarter drill
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core for each hematite-bearing red layer of the MBC (Figs. 2
and 3). For U–Th–Pb isotope analysis, a larger slab (cm
size, >0.15 g) was cut because of the very low U and Th
concentrations in chert samples. Both hematite-rich red lay-
ers and hematite-poor white layers of the MBC were sam-
pled. Samples were examined under a binocular
microscope before and after cutting in order to ensure that
cracks, veins, and other secondary features were avoided.
Samples were cleaned using acetone, 0.2 M HCl, and
18.2 MX H2O in an ultrasonic bath for more than 10 min
each to remove surface contamination, before being dried
and weighed. This procedure ensured complete removal
of any surface Fe, Pb and U contamination that may have
been introduced during coring or sampling. Powder
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samples of Apex Basalt and Duffer Formation basalt that
were analyzed for Fe isotope compositions were the same
as those studied by Li et al. (2012), and sample preparation
details may be found in that study.

Following the sample cleaning procedure noted above,
sample digestion and ion-exchange chromatography were
carried out in a clean room with HEPA-filtered air. Samples
were digested using a mixture of double-distilled HF and
Optima� grade HNO3 in capped Savillex beakers that were
heated overnight at 130 �C. Dissolved samples were con-
verted to chloride form using double-distilled 8 M HCl
and solutions were checked under a binocular microscope
to ensure that the entire sample had dissolved and that no
fluorides were present.

3.2. Iron isotope measurements

Prior to Fe isotope analysis, a small aliquot of each dis-
solved sample was taken for total Fe concentration mea-
surement using the Ferrozine method (Stookey, 1970).
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Approximately 100 lg of Fe from each sample was purified
using anion-exchange resin (BioRad AG 1X4 200–400 mesh
resin) and HCl (e.g., Beard et al., 2003). Iron solutions were
diluted to 600 ppb and isotopic measurements were con-
ducted using a Micromass IsoProbe MC-ICP-MS and an
Aridus desolvating nebulizer that aspirated at �50 lL/
min. Mass spectrometry followed the procedures reported
by Beard et al. (2003). Isotopic data are reported as
56Fe/54Fe and 57Fe/54Fe ratios in standard delta (d) nota-
tion, in units of per mil (&), and the average of igneous
rocks as the standard reference reservoir (Beard et al.,
2003):

d56Fe ¼ ½ð56Fe=54FeÞsample=ð56Fe=54FeÞstandard � 1� � 1000

ð1Þ

and

d57Fe ¼ ½ð57Fe=54FeÞsample=ð57Fe=54FeÞstandard � 1� � 1000

ð2Þ

Relative to the average of igneous rocks, the interna-
tional Fe isotope standard IRMM-014 has a d56Fe value
of �0.09& on this scale (Beard et al., 2003). The external
long-term reproducibility (2-SD) for d56Fe measurements
using this method is ±0.08&, as determined from analysis
of multiple in-house Fe standard solutions, and synthetic
samples (Fe standard solutions doped with matrix ele-
ments) that were processed through the ion-exchange pro-
cedure together with drill core samples (Appendix 2).
3.3. U–Th–Pb isotope measurements

For U–Th–Pb isotope analysis, each digested sample
was divided into two aliquots; one aliquot was used for
Pb isotope analysis and the other was spiked with a mixed
235U–229Th–208Pb tracer to determine U, Th, and Pb con-
centrations by isotope-dilution mass spectrometry. Solu-
tions were chemically purified by anion-exchange
chromatography, where initial cation separation was done
using 0.6 M HBr, followed by extraction of Pb using 6 M
HCl (Li et al., 2012). The U and Th in the 0.6 M HBr wash
was purified using a second anion-exchange column using
HNO3, followed by HCl, to separate a combined U and
Th cut from the rest of the sample (Li et al., 2012). Total
procedural blanks for Pb chemistry was 50–80 pg, which
was less than 0.1% of the amount of Pb in the samples. To-
tal procedural blanks for Th and U were <50 pg, which is
less than 10% of the amount of Th and U in the samples.
Isotope-dilution analysis of Pb, U, and Th produced con-
centration uncertainties of <0.03%, <0.23%, and <0.08%,
respectively.

Lead isotope ratios were determined on a VG Instru-
ments Sector 54 thermal ionization mass spectrometer using
a static multi-collector routine and a 208Pb ion signal of 1.7–
2.0 � 10�11 A. Lead was loaded onto single Re filaments
and run using the Si–gel H3PO4 technique. Lead isotope ra-
tios were corrected for mass fractionation by +0.125% per
amu, as constrained by long-term measurement of the
207Pb/206Pb ratio of NIST SRM-981 and the 208Pb/206Pb
ratio of SRM-982. External precision of Pb isotope analysis
was ±0.052% per amu (2 SD, n = 30), based on repeat mea-
surement of SRM-981 and SRM-982 during the analytical
session.

Isotopic ratios of 235U/238U and 229Th/232Th were simul-
taneously measured using a Micromass IsoProbe MC-ICP-
MS and a 50 ll/min self-aspirating, concentric-flow nebu-
lizer and an Aridus� desolvating nebulization system.
Instrumental mass bias was corrected using a sample-stan-
dard bracketing technique, using mixtures of Ames Th
mixed with NBL-114 natural U (238U/235U = 137.88) as
bracketing standards. The samples were diluted to match
the total ion intensity of the standards. There were no mem-
ory effects during analysis, as on-peak zero measurements
of U and Th remained unchanged after washout between
samples. Tailing effects were negligible, and correction for
abundance sensitivity did not shift the results outside ana-
lytical error.

4. RESULTS

Iron isotope compositions and concentrations for MBC
and basaltic samples, and Pb isotope compositions and U–
Th–Pb concentrations for MBC samples, are given in
Appendix 2. Iron and U–Th–Pb isotope data for MBC
samples are correlated to drill cores in Figs. 2 and 3. Iron
isotope compositions of the basaltic samples are plotted
against Fe content, Fe(III)/FeTotal and Fe/Th ratios in
Fig. 4.

4.1. Iron isotope results

The MBC samples have very high d56Fe values, ranging
between +1.53& and +2.63& (Figs. 2 and 3; Appendix 2),
that define the upper limit of measured d56Fe values for
bulk terrestrial samples. The d56Fe values of samples from
a drill core depth of 169.6–169.8 m vary between +1.98&

and +2.63& (Fig. 2). These are systematically higher than
d56Fe values of samples from a drill core depth of 176.90–
170.00 m (Fig. 3). There is a steadily decreasing trend in
d56Fe values from +2.63& at 169.61 m to +2.03& at
169.65 m (Fig. 2), and an increase in d56Fe values from
+1.53& at 176.97 m to +1.88& at 177 m (Fig. 3). Other
than these relations, there is no significant variation in
d56Fe values between layers (Table EA-1). There is no cor-
relation between d56Fe values and Fe concentrations, nor
between isotopic composition and color (red/black) of the
hematite-bearing layers. It should be noted that the Fe iso-
tope compositions of hematite-poor white layers are consis-
tent with those of the hematite-rich (red) layers (Figs. 2 and
3), indicating that d56Fe values do not correlate with Fe
contents.

In contrast to the MBC samples, basaltic samples from
the ABDP-1 drill core have much lower d56Fe values, rang-
ing between �0.40& and +0.66& (Fig. 4). The majority of
these samples cluster around 0& and the weighted average
d56Fe value for all basaltic samples is 0.00&, equal to the
average of igneous rocks (Beard et al., 2003). The d56Fe val-
ues of basaltic samples only become significantly variable as
Fe(III)/FeTotal ratios increase to >0.9 (Fig. 4). There is no
correlation between the d56Fe values and total Fe concen-
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trations in the basalts, nor between d56Fe values and Fe/Th
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4.2. U–Th–Pb isotope results

Lead concentrations in the MBC samples vary between
0.37 and 12.95 ppm, U between 3 and 60 ppb, and Th be-
tween 4.5 and 42.23 ppb (Appendix 2). Concentrations of
Pb, U, and Th are higher in the hematite-bearing red/black
layers than in the hematite-poor, white layers (Figs. 2 and
3). Notably, concentrations of Pb, U, and Th in the MBC
samples are systematically lower than those of the basaltic
samples from the same drill core, which are 1–58 ppm for
Pb, 80–1040 ppb for U, and 233–694 ppb for Th (Li
et al., 2012). Importantly, U contents are much lower than
those of modern oceanic sediments (0.306–4.889 ppm, glo-
bal average 1.68 ppm; Plank and Langmuir, 1998). The
MBC samples have very non-radiogenic Pb isotope compo-
sitions (low 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios
relative to average crust) that, in general, overlap those of
basaltic samples from the ABDP-1 drill core. The
206Pb/204Pb ratios of samples from a drill core depth of
169.6–169.8 m vary between 13.699 and 13.891 (Fig. 2),
which are systematically higher than the 206Pb/204Pb ratios
of samples from a drill core depth of 176.90–170.00 m that
vary between 12.684 and 13.153 (Figs. 2 and 3).

5. DISCUSSION

5.1. Contrasting origin for hematite in the Marble Bar Chert

and Apex Basalt

The hematite-bearing bands of the MBC have the high-
est d56Fe values ever reported from natural bulk rocks
(Fig. 5). These contrast sharply with the igneous and
near-igneous values (average d56Fe �0&; Beard et al.,
2003) of variably oxidized samples of the Apex Basalt
(Fig. 4). The large contrast in Fe isotope compositions be-
tween hematite in the MBC and that in the oxidized por-
tions (hematite and goethite; Kato et al., 2009) of the
Apex Basalt indicates distinct processes of formation.

The small variation in d56Fe values of the Apex Basalt
(Fig. 4 and Table S1), averaging 0&, suggests that Fe in
Apex Basalt is primarily igneous in origin. The limited
range in d56Fe values, which occurs only in the most oxi-
dized samples, most likely reflects small extents of internal
redistribution of Fe during oxidation. The fact that the
two samples that have low d56Fe values also have high
Fe/Th ratios, and that the samples with the highest d56Fe
values also have low Fe/Th ratios (Fig. 4) implies that some
samples might have released isotopically light Fe into fluids
during weathering. This isotopically light Fe was then oxi-
dized and re-precipitated, causing enrichment of isotopi-
cally light Fe oxides. Iron mobility could have been
promoted by weathering of sulfides that were formed at
2.76 Ga at Marble Bar (Kato et al., 2009), which produced
a locally acidic and redox-active environment that might
enable small-scale Fe mobility and Fe isotope fractionation.
Although Kato et al. (2009) suggest that oxidation occurred
in the Archean, Li et al. (2012) documented Phanerozoic U
mobility that correlated with the extent of oxidation,
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indicating that oxidation of the Apex Basalt most likely oc-
curred via channelized groundwater flow during deep Phan-
erozoic weathering. Under such conditions, large-scale Fe
mobility would not be expected, and this is supported by
the limited range in d56Fe values and the fact that the aver-
age d56Fe value lies at the value for igneous rocks.

In the MBC, the very high d56Fe values rule out the pos-
sibility that Fe was transported from the Apex Basalt. More-
over, the very high d56Fe values of the MBC are inconsistent
with hematite formation by in situ oxidation of Fe(II)-bear-
ing minerals such as siderite, as has been proposed for some
jaspers in the underlying Dresser Formation (Van Kranen-
donk et al., 2008). Siderite that precipitated from an Archean
ocean should have had a d56Fe value below �0.5& (Polya-
kov and Mineev, 2000; Wiesli et al., 2004; Johnson et al.,
2008; Rustad et al., 2010), and in situ alteration to hematite
should retain the negative d56Fe values. Furthermore, the
low solubility of Fe(III) oxides and hydroxides at circum-
neutral pH (e.g., Kuma et al., 1996, and references therein)
makes it unlikely that significant quantities of Fe could be
leached from the MBC under oxidized conditions. We there-
fore conclude that the hematite in the MBC was not pro-
duced by the Phanerozoic oxidation event that oxidized the
Apex Basalt at Marble Bar. This interpretation is consistent
with the fracture and vein patterns in the drill core (Fig. 1C),
that suggest groundwater movement was likely along chan-
nelized fracture systems.

5.2. Isotopic constraints of oxidation of Fe(II) in the Archean

ocean

The likely source of aqueous Fe(II) that was oxidized to
form hematite in the MBC was hydrothermal fluids, which
should have had a d56Fe value of around 0&, or slightly
negative (Yamaguchi et al., 2005; Johnson et al., 2008).
Oxidation of aqueous Fe(II) in modern marine hydrother-
mal systems produces precipitates that have slightly nega-
tive d56Fe values (Fig. 5), reflecting essentially
quantitative oxidation. The very high d56Fe values of hema-
tite in the MBC, therefore, do not support a fully oxidized
Archean ocean, as proposed by Hoashi et al. (2009).
Rather, the very high d56Fe values can only be explained
by partial oxidation of aqueous Fe(II), given the �3–4&

fractionation in 56Fe/54Fe between oxides and aqueous
Fe(II) (Wu et al., 2012).

Constraints on the extent of oxidation of aqueous Fe(II)
in an Archean ocean can be made using a one-dimensional
dispersion/reaction model, which assumes aqueous Fe(II)
released from hydrothermal vents diffuses upwards to the
photic zone, followed by oxidation of Fe(II)aq to Fe(III)
hydroxides (Czaja et al., 2012, 2013). The limitation of
the dispersion/reaction model is that it may not accurately
describe upwelling of hydrothermal Fe(II), as the solution
of the model relies on a steady-state condition of the ocean.
Nevertheless, the dispersion/reaction model is superior
compared with a simple Rayleigh fractionation model that
is commonly used in geochemical studies, which is not an
appropriate model for interpreting Fe isotope fractionation
during oxidation in the photic zone because it is a closed-
system model and does not account for a continual influx
of Fe(II)aq and outflux of Fe(OH)3 precipitates. Using the
dispersion/reaction model of Czaja et al. (2012, 2013), we
produced vertical profiles for concentrations and isotope
compositions of Fe(II)aq and Fe(OH)3, at different rates
of Fe(II)aq oxidation (Appendix 3). In the model, oxidation
could occur either anaerobically or aerobically, which sim-
ulates oxidation by either anoxygenic Fe(II)-oxidizing pho-
tosynthetic bacteria, or by free oxygen generated by
oxygenic photosynthetic bacteria, respectively; in the latter
case, our model can provide constraints on the amount of
free oxygen that may have been present.

The dispersion/reaction model of Czaja et al. (2012,
2013) produces broadly similar profiles of concentrations
and isotopic compositions of Fe(II)aq and Fe(OH)3 over a
wide range of input parameters (Appendix 3). Although
many input parameters may be varied in the model, the
most important factor that affects the results is the Fe(II)
oxidation rate (fFe-oxidation). At a high rate of Fe(II) oxida-
tion, which may be produced either by high O2 from photo-
synthesis or by high activity of anoxygenic Fe(II)-
oxidation, a low-Fe(II)aq zone is developed in the upper-
most part of the photic zone. At such high rates of oxida-
tion, the weighted average d56Fe value for Fe(OH)3 is
close to 0& (Fig. 6; Appendix 3), reflecting quantitative
Fe(II) oxidation of the Fe(II) hydrothermal input, assumed
to have d56Fe = 0&. At lower Fe(II) oxidation rates, how-
ever, high Fe(II)aq concentrations develop in the photic
zone, which in turn decreases the upwards Fe(II)aq flux
(fFe-transport), as required to maintain a steady-state condi-
tion in the dispersion/reaction model (fFe-transport = fFe-oxida-

tion). This relation occurs because the Fe(II)aq flux is a
function of the Fe(II)aq concentration gradient in the water
column and the eddy dispersion coefficient. Under these
conditions, Fe(II)aq in the photic zone is partially oxidized,
and the oxidation product, Fe(OH)3 precipitates, has posi-
tive d56Fe values (Fig. 6; Appendix 3).

Dispersion/reaction modeling shows a rough linear rela-
tion between d56Fe values of Fe(III) hydroxides and the
oxidation flux (fFe-oxidation) between zero and fref, a param-
eter defined as the maximum diffusive Fe(II) flux from the
Fe(II) source to the photic zone (fref = D � DCref/zref; Kap-
pler et al., 2005) (Fig. 6). D is the eddy dispersion coeffi-
cient, DCref is the Fe concentration difference between
Fe(II) source and Fe-depleted zone (CFe(II)-source-0), and zref

is the distance between the Fe(II) source and the bottom of
the photic zone. The slope of the rough linear relation is
dependent on the Fe isotope fractionation factor between
aqueous Fe(II) and Fe(III) hydroxides (Fig. 6). At high
rates of photosynthesis, complete depletion of Fe(II) devel-
ops in the top of the photic zone. In the case of anoxygenic
photosynthesis, microbes are concentrated in the bottom of
the photic zone and are limited by access to Fe(II). This is a
scenario that has been proposed and discussed by Kappler
et al. (2005) for anoxygenic photosynthetic oxidation of
Fe(II). In the case of high oxygenic photosynthesis, com-
plete depletion of Fe(II) also develops in the top of the pho-
tic zone at high rates of oxygen production, accompanied
by a build-up of free O2, which is transported downward
in the water column to react with Fe(II) below the photic
zone. It should be noted that fFe-oxidation can be greater than
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fref and, in this case, free O2 builds up and the oxygenated
zone expands downwards to below photic zone, which de-
creases the diffusion distance of aqueous Fe(II) (Fig. 6B).
In both cases (anoxygenic or oxygenic photosynthesis),
close-to-zero d56Fe values for Fe(III) hydroxides are pre-
dicted, as Fe(II) is quantitatively oxidized.

The modeling results indicate that the d56Fe values of
the ferric hydroxides/oxides may be used as a proxy for
Fe(II)aq abundance in the photic zone. The high d56Fe val-
ues of the MBC iron oxides require a reduced, Fe(II)aq-rich,
photic zone. This, in turn, places constraints on permissible
oxygen contents, which vary as a function of d56Fe values
of Fe(OH)3 precipitates (Fig. 7). Important variables are
the 56Fe/54Fe fractionation factor between Fe(OH)3 and
Fe(II)aq, and the depth of the basin, the latter of which ex-
erts an influence on the rate of Fe(OH)3 precipitation rela-
tive to Fe(II)aq influx. The small changes in d56Fe values in
the MBC core may reflect subtle changes in extent of Fe(II)
oxidation. The fact that the d56Fe values in a particular sec-
tion of core do not correlate with Fe-rich or Fe-poor band-
ing (Figs. 2 and 3) suggests that the variable Fe
concentrations in MBC bands reflect variations in Fe(III)
oxide accumulation rates (or SiO2 precipitation rate) at
the time of deposition, rather than changes in the extent
of oxidation. In all cases, however, the O2 contents esti-
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mated for the photic zone are less than 10�3 lM to produce
the high measured d56Fe values, which is less than 0.0003%
of modern O2 contents in the photic zone. This conclusion
is robust and is insensitive to changes in input parameters,
including choice of Fe(OH)3–Fe(II)aq Fe isotope fraction-
ation factors, although the later parameter would be impor-
tant if attempting to distinguish between O2 contents of
10�3 to 10�6 lM (Fig. 7). For all practical purposes, how-
ever, all calculated O2 contents of <10�3 lM can be consid-
ered to indicate anoxic conditions in the photic zone, and
this conclusion contrast greatly with the proposal of Hoashi
et al. (2009) that the Fe oxides in the MBC reflect deposi-
tion in an oxygenated ocean.

5.3. U–Th–Pb isotope constraints on Archean ocean U

contents

Uranium abundances in seawater will broadly correlate
with oxygen contents because of the high solubility of
U(VI) species relative to reduced species (Langmuir,
1978). Below we estimate the maximum seawater U con-
tents of the Paleoarchean seawater from which the MBC
precipitated, which provides an independent estimate for
seawater oxygen contents relative to those based on Fe iso-
topes. Our approach is to estimate U contents using U–Th–
Pb geochronology, which provides insights into changes
due to radioactive decay and post-formation alteration.
These issues are critical to assess in such ancient rocks be-
cause they bear on the confidence with which U can be used
as a paleo-environmental proxy.

5.3.1. Post-depositional mobility of U and Pb in the MBC

It is possible that the low measured U contents in the
MBC reflect post-depositional U loss through leaching by
oxygenated groundwater circulation, but this can be criti-
cally evaluated using U–Th–Pb isotopes. The
206Pb/204Pb–208Pb/204Pb–207Pb/204Pb variations of the
MBC indicate non-radiogenic isotope compositions, plot-
ting along Pb–Pb arrays that correspond to low-238U/204Pb
ratios (l) between 0 and 4 (Fig. 8), indicating long-term low
U/Pb ratios. The MBC samples have Pb isotope composi-
tions that overlap the basaltic samples in the ABDP-1 drill
core, and lie between two Pb isotope end members (i.e., the
non-radiogenic “ore lead” and the radiogenic “basalt lead”)
thatwere previously reported from the Warrawoona Group
(Fig. 8: Li et al., 2012). On a 206Pb/204Pb–207Pb/204Pb plot,
the MBC samples scatter about a line that has a slope
equivalent to an age of 3435 ± 140 Ma and a MSWD of
2.9 (insert of Fig. 8B; best-fit line calculated using Isoplot
v2.49 (Ludwig, 1999), where 2-r errors for Pb isotope ratios
are ±0.052%/amu). This age matches the depositional age
of the MBC that is constrained by zircon U–Pb geochronol-
ogy (Fig. 1). It is important to note, however, that all Pb
reservoirs in the region liealong the isochron (Fig. 8), and
therefore mixing relations will produce the same array
(see discussion in Li et al., 2012). The MBC samples do
not, however, plot on isochrons that correspond to a
3.46 Ga age on plots of 206Pb/204Pb–238U/204Pb and
208Pb/204Pb–232Th/204Pb (Fig. 9), indicating open-system
behavior for the MBC samples.
On a 208Pb/204Pb–232Th/204Pb diagram (Fig. 9B), all of
the MBC chert samples plot to the left side of the reference
isochron. Because Th should be relatively immobile, the
very low 232Th/204Pb ratios likely reflect Pb addition, and
the range of 208Pb/204Pb ratios can be explained as a mix-
ture of low-206Pb/204Pb–208Pb/204Pb “ore Pb” and
high-206Pb/204Pb–208Pb/204Pb “basalt Pb” components that
have been added to the chert. The data relations on a
206Pb/204Pb–238U/204Pb diagram (Fig. 9A) are also consis-
tent with Pb addition, although mobility of U is also possi-
ble, and is evaluated in Section 5.3.2 below. The isochron
diagrams in Fig. 9A suggest that both the MBC and Apex
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Basalt have been influenced by the same event(s), as Pb
addition has also been reported in the variably oxidized
Apex Basalt (Li et al., 2012). Addition of “ore Pb” could
have occurred at any time since 3.46 Ga because “ore Pb”

defines the starting point of the 206Pb/204Pb–207Pb/204Pb
“isochron” (see discussion in Li et al., 2012), whereas addi-
tion of “basalt lead” likely occurred recently, because the
slope of the mixing trend on the 206Pb/204Pb–207Pb/204Pb
diagram (Fig. 8B) represents an age that is consistent with
the depositional age.

A key question is the effect of Pb addition to the U/Pb
ratios, which is important to understand before U contents
of the MBC at the time of deposition can be estimated. To
account for the influence of Pb addition to the MBC, we
evaluate the U/Pb ratios in the MBC by modeling the
radiogenic decay of the primary depositional U component
and compare the model results to measured results
(Fig. 10). We assume a reference that represents samples
that contained 5 ppm Pb with variable Pb isotope composi-
tions (l = 0.1–3, j = 0.25; for definitions of l and j, see
Faure 1986), to approximate the measured Pb isotope com-
positions of the MBC samples, and these reference values
define a family of lines in a 208Pb/204Pb–206Pb/204Pb plot
(Fig. 10). The importance of incorporating 208Pb/204Pb ra-
tios lies in the relative immobility of 232Th, the parent to
208Pb. We define U*/Pb as the deviation in measured U/
Pb ratios relative to those required to produce the least
radiogenic Pb isotope ratios of the MBC. U* could be
viewed as “excess U” in the MBC at 3.46 Ga ago and it is
further described mathematically in the following section
(Section 5.3.2). Modeling results in Fig. 10 indicate that
the Pb isotope deviations define a narrow range between
0 and +0.8% for U*/Pb ratios. In contrast, if we assume
that 3.46 Ga U contents were 100 or 300 ppb higher (U*/
Pb = +2% and +6%, respectively), but had recently de-
creased, the measured 206Pb/204Pb–208Pb/204Pb variations
would have been highly skewed toward high 206Pb/204Pb ra-
tios (Fig. 10), which is not observed. This conclusion is ro-
bust and independent of issues related to Pb addition, as U/
Pb ratios are used in the model (Fig. 10). We cannot, how-
ever, rule out the possibility of U addition, a Phanerozoic
event observed in the Apex Basalt adjacent to the MBC
(Li et al., 2012). Therefore, the measured U contents in
MBC samples ultimately will only constrain the upper limit
of U contents in the MBC at the time of deposition at
3.46 Ga.

5.3.2. Estimating Archean seawater U concentration

A complete assessment of seawater U contents at the
time of deposition of the MBC requires a mass-balance
relation that accounts for four U components in the
MBC samples: (1) U adsorbed by Fe(III) hydroxides during
deposition in an Archean ocean (Uadsorbed) at 3.46 Ga, (2)
an Archean detrital U component (Udetrital), (3) possible
U added by a Phanerozoic event (UPhanerozoic), and (4) the
decrease in U contents of the Archean components due to
238U and 235U decay. The possibility of U addition in the
Phanerozoic is based on the evidence presented by Li
et al. (2012) for the Apex Basalt. Collectively, these terms
may be described by the equation:

Umeasured ¼ Uadsorbed þUdetrital þUPhanerozoic �Udecay ð3Þ

The detrital component of U can be constrained using
the measured Th contents and a U/Th ratio of 0.25 that
approximates that of average crust (Wignall and Myers,
1988; Chung and Chang, 1996; Fisher and Wignall, 2001).
The amount of U decrease due to radioactive decay is cal-
culated to be 47%, based on decay constants of 238U and
235U, present-day 238U/235U ratio, and an age of 3.46 Ga.
The amount of U added during the Phanerozoic is difficult
to constrain. An upper limit on U adsorbed, nevertheless,
may be constrained by assuming UPhanerozoic is zero,
although we postulate that the estimated Uadsorbed content
could be an order of magnitude lower than the upper
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bounds calculated here, given that Li et al. (2012) docu-
mented increases of up to 890% in the U/Th ratios of the
ABDP-1 basalts during the Phanerozoic.

Uranium contents of seawater may be constrained using
the Uadsorbed calculated above, the iron oxide contents of
the MBC, and data on U adsorption coefficients measured
for iron oxides/hydroxides. Adsorption coefficients for U
are very high for Fe(III) oxides and hydroxides, more than
three-orders-of-magnitude higher than those for U adsorp-
tion to silicates, including SiO2 phases (Waite et al., 1992),
indicating that Fe(III) oxides/hydroxides should have con-
trolled the U budget of the MBC. Partition coefficients (Kd)
for U between Fe(III) hydroxide and aqueous solution are
pH and pCO2 dependent (Wazne et al., 2003; Davis et al.,
2004). There is a general consensus that the pH value for
Archean seawater was below that of the modern ocean, per-
haps 7.5 or lower, based on expected higher atmospheric
CO2 contents (Walker, 1983; Grotzinger and Kasting,
1993; Ohmoto et al., 2004). Under these conditions, the U
Kd between Fe(III) hydroxide and aqueous solution varies
between 104 and 106 (Wazne et al., 2003; Davis et al.,
2004). Using a conservative Kd of 104 and the U*/Fe2O3 ra-
tios of the MBC (U* = Umeasured + Udecay � Udetrital),
upper limits for Archean seawater U contents during pre-
cipitation of the MBC are estimated at between 0.02 and
0.75 ppb (Fig. 11). Given the possibility of Phanerozoic U
addition discussed above, such estimates are upper bounds
and the seawater value at the time of deposition could be
lower than 0.02 ppb U. We note that the highest inferred
U*/Fe2O3 values are those measured in samples that have
the lowest Fe contents (Fig. 11), which suggests that the
highest U contents inferred for Archean seawater are those
samples that could be most susceptible to Phanerozoic U
addition, given their low Fe contents. We therefore con-
clude that the U concentration of 3.46 Ga seawater was
at least two orders of magnitude lower than that of modern
seawater (3 ppb; see refs in Barnes and Cochran, 1990).
Although there may be refinements that could be made to
Kd estimates with new experimental data, we have chosen
a conservative value. Uncertainties in the detrital compo-
nent are less than 5%, given the narrow range in crustal
U/Th ratios (e.g., Li et al., 2012).

Uranium occurs in primary igneous rocks as insoluble
U(IV) compounds that, when oxidized, form highly soluble
U(VI) species (Langmuir, 1978). The low redox potential of
the U(VI)/U(IV) couple (0.27 V, Langmuir, 1978) makes U
an element that is very sensitive to continental oxidation.
The low U content in Archean seawater inferred here there-
fore complements geological evidence of detrital uraninite
preservation in the Archean (Rasmussen and Buick,
1999), which attests to an anoxic Archean atmospheric
and ocean conditions at 3.46 Ga. Such results are consistent
with the implications of the high d56Fe values discussed
above. Our results do not agree with the study by Rosing
and Frei (2004), who argue for U-rich Archean seawater
based on complex and partially reset Pb isotope composi-
tions of 3.8 Ga metasedimentary rocks of the Isua Supra-
crustal Belt of southern West Greenland.

5.4. Implications for photosynthesis in the Archean ocean

The Fe isotope compositions of the MBC are consistent
with the suggestion by Hoashi et al. (2009) that hematite in
the MBC formed via oxidation of Fe(II) in the Archean
ocean. Iron isotope data, however, rule out an oxygenated
ocean as the cause of this Fe(II) oxidation, as proposed by
these authors. Importantly, our modeling demonstrates
that the occurrence of Fe(III) minerals cannot be taken as
evidence for oxygenation of the atmosphere. There are sev-
eral possible mechanisms for Fe(II) oxidation, including
UV photo-oxidation, anaerobic photosynthetic Fe(II)-oxi-
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dizing bacteria, or free oxygen produced by oxygenic pho-
tosynthesis. Although UV photo-oxidation of Fe(II)aq has
been proposed as a mechanism for Fe(III) oxide precipita-
tion in the Archean (Braterman et al., 1983), this is not sup-
ported by the experimental work of Konhauser et al.
(2007), which demonstrated that UV photo-oxidation oc-
curs at a rate much slower than the rate of precipitation
of Fe(II) minerals such as greenalite and siderite under Ar-
chean seawater conditions (high dissolved silica, Fe(II), and
high pCO2). Although additional experimental work
exploring a range of conditions may be required to fully
rule out UV photo-oxidation, the evidence at hand suggests
this is an unlikely process. Precipitation experiments indi-
cate that siderite is isotopically lighter than aqueous Fe(II)
by ca. 0.5& in d56Fe values (Wiesli et al., 2004), and greena-
lite probably also has low d56Fe values based on field stud-
ies (Frost et al., 2007); it is thus unlikely that hematite
formed from these precursor minerals by oxidation or pH
change (Garrels and Christ, 1965). Both reaction kinetics
and Fe isotope compositions, therefore, rule out UV
photo-oxidation as the origin of hematite in the MBC.

Remaining possible mechanisms for Fe(II) oxidation in-
clude oxidation by free oxygen, or by anaerobic photosyn-
thetic Fe(II)-oxidizing bacteria. Under an anoxic Archean
atmosphere, as suggested by a low seawater U concentra-
tion (this study) and occurrence of mass-independent frac-
tionation of S isotopes at this time (Farquhar et al.,
2007), any free oxygen would have been confined to local-
ized “oxygen oases”, such as might be associated with
blooms of oxygenic photosynthesizing bacteria. Alterna-
tively, anaerobic photoautotrophic microorganisms could
have used Fe(II) rather than H2O as an electron donor, pro-
ducing Fe(III) rather than O2 (Widdel et al., 1993). Exper-
iments in systems that only contain Fe show that anaerobic
photoautotrophic microorganisms produce hydrous ferric
oxide as metabolic products that are enriched in heavy Fe
isotopes by �1.5 ± 0.2& in d56Fe values relative to Fe(II)
solutions (Croal et al., 2004), and Fe(II)-oxidizing nitrate-
reducing bacteria may produce even larger fractionations
of �3& (Kappler et al., 2010). Co-precipitation of iron oxi-
des with Si, as would be expected during formation of the
MBC, produces further enrichment of heavy Fe isotopes
due to bonding changes (Wu et al., 2012), where the Fe–
Si hydroxide-Fe(II)aq fractionation factor can be as high
as 4& in 56Fe/54Fe. The Fe isotope compositions of the
MBC, therefore, match well with these experimentally
determined Fe isotope fractionations, and it can be reason-
ably concluded that anaerobic photosynthesis, in a Si-bear-
ing system, could produce the measured d56Fe values for
Fe(III) oxides in the MBC.

The very high d56Fe values require that the photic zone
of Paleoarchean ocean was rich in Fe(II), the most impor-
tant electron donor that could have supported anoxygenic
photosynthesis (Canfield, 2005). We suggest that the combi-
nation of high-d56Fe values and low U contents could be a
signature for anaerobic photosynthetic Fe(II)-oxidizing
bacteria. Because anoxygenic photosynthesis is likely to
be a deeply rooted metabolism (Blankenship, 1992; Hoh-
mann-Marriott and Blankenship, 2011), and phylogenetic
evidence suggests that oxygenic photosynthesis evolved
after anoxygenic photosynthesis (Xiong et al., 2000), our re-
sults suggest that anoxygenic photosynthesis can be traced
back to 3.46 Ga ago. Recent work by Czaja et al. (2013) on
3.8 Ga BIFs from the Isua Supracrustal Belt suggests that
this metabolism may have been present even earlier,
although the range in d56Fe values measured at Isua is less
than that measured in the MBC.

Stromatolite-bearing units underlie and overlie the MBC
in the Dresser Formation and Strelley Pool Formation,
respectively (Allwood et al., 2006; Van Kranendonk,
2006), and have been interpreted to reflect precipitation
by possible photosynthetic communities (Allwood et al.,
2009). Tice and Lowe (2004) interpreted the 3.4 Ga Buck
Reef Chert in the Barberton greenstone belt, South Africa,
to preserve an anoxygenic photosynthetic community. Sev-
eral studies have suggested that �3.4 Ga photosynthetic
communities likely used H2 as an electron donor (Tice
and Lowe, 2006; Bontognali et al., 2012). The isotopic re-
sults from the MBC add to evidence for a diversity of
anoxygenic photosynthetic pathways in the Paleoarchean,
where production of high-d56Fe oxides, in essentially anoxic
environments, seems likely to indicate anoxygenic photo-
synthetic Fe(II) oxidation.

6. CONCLUSIONS

Hematite-bearing jaspilitic chert samples from the
ABDP-1 drill core through the c. 3.46 Ga Marble Bar Chert
Member of the Duffer Formation, Pilbara Craton, show ex-
treme enrichment in heavy Fe isotopes (d56Fe = +1.53& to
+2.63&), the highest d56Fe values reported from natural
rocks. These results contrast with near-zero d56Fe values
of the hematite-bearing Apex Basalt adjacent to the
MBC, indicating that hematite in the MBC was not pro-
duced during the Phanerozoic event that oxidized the Apex
Basalt. The very high d56Fe values can only be explained by
partial oxidation in an Fe(II)-rich early Archean ocean
(3.46 Ga). Dispersion/reaction modeling indicates that very
low oxidation rates and low degrees of Fe(II) oxidation are
needed to produce the highly positive d56Fe values. In par-
ticular, modeling strongly suggests that the photic zone of
the 3.46 Ga ocean was reduced and buffered by excess
Fe(II). In fact, modeling suggests that photic zone oxygen
contents were less than 10�3 lM, less than 0.0003% of mod-
ern photic zone levels. Importantly, the dispersion/reaction
modeling can more accurately determine the extent of oxi-
dation and attendant levels of O2, relative to more tradi-
tional modeling, such as simple Rayleigh fractionation, an
approach that is not appropriate for a dynamic environ-
ment such as shallow marine settings.

The MBC samples contain ppb-levels of U and Th that
are orders-of-magnitude lower than that of Phanerozoic
cherts. The low Th contents indicate low detrital compo-
nents in the MBC samples. U–Th–Pb isotope systematics
indicate that the MBC has undergone post-depositional
alteration that added external Pb components to the
MBC, which is consistent with results obtained from the
Apex Basalt (Li et al., 2012). Modeling of U–Pb isotope de-
cay, however, indicates that the low U contents of the MBC
cannot be explained by recent U loss, despite the evidence
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for Pb mobility. Based on the U–Th–Pb isotope data, we
constrain the upper limit of U concentration that was ad-
sorbed by Fe(III) hydroxides during deposition of the
MBC, from which we calculate an upper limit of U concen-
tration in 3.46 Ga seawater at �0.02 ppb, at least two or-
ders of magnitude lower than the modern seawater value.
Because U is mobile only when oxidized, the low U concen-
tration in the MBC samples is an independent geochemical
proxy that indicates an anoxic atmosphere in the Archean
at 3.46 Ga. Our U–Th–Pb results also highlight the impor-
tance of determining the “age” of U in ancient sedimentary
rocks when using U as a paleo-redox proxy, either through
element abundances or mass-dependant isotope
fractionations.

Collectively, the extreme enrichment in heavy Fe iso-
topes and low-U contents rule out the hypothesis that the
Archean ocean was oxic (Hoashi et al., 2009). The MBC
is laterally extensive (�120 km) and was precipitated in a
deep marine environment, suggesting that the Fe(II)-rich,
U-poor nature inferred for seawater at 3.46 Ga existed at
least on a basinal scale. Our results provide additional sup-
port for a growing body of evidence for anoxic conditions
at �3.4 Ga, and additionally point to anoxygenic photo-
synthetic Fe(II) oxidation as a likely phototrophic pathway
in the Paleoarchean. The results presented here do not sup-
port the presence of oxygenic photosynthesis as the mecha-
nism of oxidation of Fe(II) in the MBC.
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