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A B S T R A C T   

The existing bias correction (BC) methods used in impact studies are routinely based on a fixed model structure 
and often ignore the nature and magnitude of biases, and their variations into the future. As a calibrated model is 
applied to bias correct the future time series, there is no feedback mechanism to assess the impact of model 
complexity on the model performance in the future. In this paper we propose a flexible modelling strategy to 
create a robust bias correction procedure, in the form of an open-source toolkit in the R statistical computing 
environment. The approach allows the user to apply a multi-dimensional bias correction model that is self- 
evolving and grows in complexity on the basis of the requirement of the raw data. The theoretical back
ground and the capabilities of the software along with a sample application and results discussions are 
demonstrated in this paper.   

1. Introduction 

Quantification of the effects of climate change is currently one of the 
most debatable and challenging topics in science. Global Circulation 
Models (GCMs) are considered as the best tools to understand Earth’s 
climate dynamics and evolution (Randall et al., 2007). At regional or 
local scales, Regional Climate Models (RCMs) or statistical downscaling 
models are often used to provide future projections of climate variables 
and to assess the impacts of climate change on regional water resources 
(Mehrotra and Sharma, 2006, 2010; Vrac and Naveau, 2007; Fowler 
et al., 2007; Graham et al., 2007; Forzieri et al., 2014; Reshmidevi et al., 
2017; Steinfeld et al., 2020; Woldemeskel et al., 2016; Wood et al., 2004; 
Hu et al., 2020; Nguyen et al., 2020). With the improvement in 
computing and data storage resources, the climate models can now 
operate at finer resolution, and with the advancement of our knowledge 
and better understanding of science and nature they offer a better rep
resentation of the physical processes embodied. Thus, the recent past has 
witnessed improved capability and sophistication in GCMs and RCMs. 
Notwithstanding these improvements, the climate model simulations 
still show biases, particularly for variables dealing with the hydrological 
cycle (Navarro-Racines et al., 2020; Koutroulis et al., 2016; Papadimi
triou et al., 2017; Maraun, 2012). Such biases come from varied sources; 
the most obvious reasons are imperfect model representations of at
mospheric physics (Maraun, 2012) and incorrect initialization of the 

model or errors in the parameterization chain with respect to GCMs 
(Nguyen et al., 2016). Theoretically, finer resolution of Regional climate 
models (RCMs) should improve some of the physical processes and 
reduce biases as it allows topography, land type and land use distribu
tion to be more accurately represented in climate models. However, as 
GCMs provide the forcing/driving boundary conditions for the RCMs, 
significant biases can persist either from the driving GCM or from the 
RCM itself (Rocheta et al., 2017; Sippel et al., 2016; Troin et al., 2015; 
Nahar et al., 2017; Eden et al., 2012). As a result, it is important to 
bias-correct the raw climate model outputs before their use in impact 
assessments studies (Piani et al., 2010; Mehrotra and Sharma, 2010; 
Nguyen et al., 2016; Sarhadi et al., 2016). Bias correction can reduce 
GCM/RCM biases and forms a necessary post-processing step in almost 
all impact assessment studies that rely on the outputs of climate models. 
According to Murphy (1993), a proper BC should improve quality 
(matching of model output and observations), consistency (matching of 
model dynamics/output and our judgement), and value (meaningful 
model output for the benefit of the users) of the raw model output. 

Bias correction algorithms vary from equalization of statistical 
characteristics between modelled and observed precipitation, for 
example, simple correction for means and variance (Wilby et al., 2004; 
Ghosh and Mujumdar, 2008; Hay et al., 2000; Lenderink et al., 2007), to 
more complex approaches designed to correct for quantiles, popularly 
known as Quantile Mapping (QM) approaches (Li et al., 2014; Wood 
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et al., 2004; Piani et al., 2010; Boé et al., 2007), or variability and 
persistence attributes at multiple time scales (Haerter et al., 2011; 
Johnson and Sharma, 2011) and in space as well as across variables 
(Mehrotra and Sharma, 2015, 2016, 2019; Vrac and Friederichs, 2015). 
The complexity of BC models increases with an increase in the type of 
attributes to be bias corrected, time scales, number of variables and 
locations included. In general, the model complexity increases if the 
intention is to look beyond a) distribution biases i.e. dependence biases, 
b) single variable i.e. multivariate, c) single location i.e. multiple loca
tions, d) single time scale i.e. time nesting and, e) their combinations. 
The size of matrices grows exponentially with an increase in the number 
of variables, locations and time nesting considered. 

So, ‘How complex should a BC model be?’ Should a basic QM or 
mean and SD correction model be enough, or a comprehensive BC model 
be selected? How much complexity can be allowed before there is a risk 
of overfitting (an excessive number of model parameters) and the danger 
of altering the physical credibility of GCMs? Model complexity is 
traditionally evaluated by splitting the data into two parts, using one to 
develop the model while using the other to evaluate the model perfor
mance and to compare how the model performs during the evaluation 
phase as model complexity is increased. This procedure is popularly 
known as a split sample test and the two parts are known as calibration 
and validation samples or time periods. A more complex model, in 
general, is expected to perform better in calibration than a simpler 
model as it has got more parameters that can be fine-tuned to obtain a 
good fit to the data used. It might struggle in validation as multiple 
parameters will force the model to behave like the calibration period. A 
simpler model, on the other hand, is expected to produce similar per
formances both in calibration and validation. This idea is presented in 
Fig. 1 where a general relationship between model performance and 
model complexity is shown. As can be seen, there is a small window that 
defines a “reasonable” model performance in both calibration and 
validation along with an optimal level of complexity (a function of the 
number of parameters) of a model. 

While dealing with the systematic biases in climate model simula
tions, the consideration of a number of variables, multiple locations, 
time scales and attributes of interest further complicates the selection 
and assessment of a BC model structure. Like any other model, 
increasing BC model complexity also increases overall agreement of bias 
corrected climate model output with observations during calibration 
(current climate). However, as the calibrated model is applied to future 
climate simulations, it cannot be validated and an overfit can easily 
provide escalated results. It is of more concern when dealing with 
multivariate data sets or a single variable at multiple locations. There is 

no simple feedback mechanism to assess the impact of model complexity 
on model performance in the future. Even, performing the split sample 
test on the current climate data is of little help as real validation lies in 
assessing the model performance when it is applied to the future climate 
data that can exhibit significantly larger changes compared to what the 
historical record exhibits (Mehrotra and Sharma 2019). As the climate 
system evolves with time, the distribution of climate variables is also 
likely to change with time and along with the model biases (Maraun, 
2013). Although, almost all existing BC modelling approaches assume 
time-invariant biases and there seems to be no simple way forward to 
account for non-stationary bias in BC models (Nahar et al., 2017). 

In majority of climate change impact studies, the spatial, temporal 
and multi-variable attributes are often misrepresented by climate 
models. The univariate approaches modify marginal distributions and 
leave other multi-dimensional aspects largely unchanged (Mehrotra and 
Sharma, 2016). Many derived hydrological variables such as flow, soil 
moisture and groundwater levels are often a result of accumulated 
precipitation and/or temperature anomalies over several days, weeks or 
months covering the large areas. Therefore, for hydrological impact 
studies, a univariate bias correction approach is of limited use and the 
use of more comprehensive bias correction approaches is warranted. 

In recent past, many multi-dimensional BC approaches aimed at 
correcting bias in time, space and across variables have been proposed 
(Piani and Haerter, 2012; Vrac and Friederichs, 2015; Mehrotra and 
Sharma, 2015, 2016, 2019). Parametric multivariate bias correction 
approaches and multivariate variants of QM, for example, N-dimen
sional probability density function transform (MBCn) (Cannon, 2018) 
and MRNBC or MRQNBC of Mehrotra and Sharma (2015; 2016) and 
Mehrotra et al. (2018) are based on complex mathematical formulations 
and require estimation of many parameters with large matrices. The 
intricacy of these approaches increases with an increase in the number 
of variables, timescales and statistics to be corrected and to some extent, 
draw a limitation on their use. 

Keeping these aspects in mind, we propose here a self-evolving 
robust BC model formulation that relies on the data itself and defines 
an optimal configuration within the MRQNBC modelling strategy 
(Mehrotra et al., 2018), optimality being defined here in terms of model 
robustness in current and future model projections. In the approach, we 
start with a simple BC model and gradually bring in model complexity 
by testing, validating and adding additional BC components for each 
biased statistic, time scale, location and variable in a stepwise manner 
following the response we obtain from the data used for current (“cali
bration”) and future (“validation”) climate. The approach ensures that 
we have tested the need and usefulness of individual BC components to 

Fig. 1. Model complexity and performance.  
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be applied for that statistic, variable, time scale and location and not just 
applying a BC following a pre-fixed model structure selected. The 
stepwise procedure checks the evolved model structure for stability and 
allows model structure complexity to grow only if it is required and 
justified by the data. At each step, we check the utility of BC in valida
tion (future climate), another important principle of model develop
ment. The final objective of this stepwise model building procedure is to 
have a final BC structure that performs well both on the data that is used 
to calibrate (e.g. the observed and current climate) and on the data that 
is used to validate the model (bias correction of future climate 
projections). 

Following this, the Robust Multivariate Bias Correction (RoMBC) 
software package has been developed in the R statistical computing 
environment. It broadly follows the modelling strategy adopted in our 
earlier multivariate rigid bias correction approaches, for example, 
Multivariate Nested Bias Correction approach as described in Mehrotra 
and Sharma (2015; 2016) and Mehrotra et al. (2018). The flexibility 
introduced avoids the need of specifying the timescales and statistics to 
be included at each time step of bias correction for calibration and 
validation, thereby making it easier for the users to implement the 
approach in a fairly simple manner. This paper describes the software 
package and provides a simple example of its applications. 

2. Data used 

CSIRO and Bureau of Meteorology (2015) (hereafter referred to as 
CB 2015) have prepared a technical report, ‘Climate Change in 
Australia’ to help capture the range of projection results arising from the 
CMIP5 database. Considering a large number of GCM simulations 
available under the CMIP5 archive, a proper selection of a sub-set of 
models for use in impact assessment studies becomes important. The 
selected model should be able to reproduce the major climatic features 
and modes of variability, for example, seasonal and annual cycles of 
rainfall and temperature. Although, the ability of individual CMIP5 
models to simulate Australian climate varies depending on the climatic 
variable, region and season under consideration. Model selection is also 
influenced by the availability of relevant data, since some climate var
iables were not archived for some models or emission scenarios. 
Considering model skill, model genealogy and other relevant factors, a 
subset of eight CMIP5 models, from a total of 40, was selected by 
CB2015 for use in climate change impact assessments. The method used 
for selection of these models is described in Chapter 9 of the Technical 
Report (CB 2015). At the time of data collection, out of these eight 
models, data of six models was readily available on the CMIP5 archive 
and has been used in the present research. Table 1 provides details of 
these six GCMs. 

The Greater Sydney Region contains 18 sub-catchments. The daily 
time series of catchment averaged rainfall was formed using gridded 

data from the Bureau of Meteorology while daily time series of evapo
ration at three operational meteorological stations located within the 
region was provided by WaterNSW for the 1900–2013 time period (114 
years). In addition to observed data, daily time series of GCM rainfall 
and temperature data for 30 years each for current (1976–2005) and 
future (2069–2099) climates, for 6 GCMs for RCP8.5 scenario over the 
study region is obtained and interpolated over the 18 sub-catchments. 
As evaporation was not directly available from these GCMs, a condi
tional model was developed using observed evaporation and tempera
ture, and daily time series of GCM evaporation was simulated 
conditional on the GCM temperature for current and future time periods. 
Observed gridded temperature was obtained from Bureau of Meteo
rology, The Australian Climate Observations Reference Network – Sur
face Air Temperature (ACORN-SAT) dataset which has been developed 
to monitor climate variability and change in Australia. The dataset 
provides a daily record of Australian temperatures since 1910 (Trewin, 
2018). 

3. Methodology 

Among the different univariate bias correction methods that have 
been suggested, quantile mapping has been found to provide particu
larly stable results (Themeβl et al., 2012; Teutschbein and Seibert, 2012) 
and is increasingly used to bias correct the RCM/GCM climate data all 
over the world (e.g. Finger et al., 2012; Forzieri et al., 2014). The 
approach is capable of correcting for the biases in the daily distribution 
(mean and in variance) of the raw time series. Similarly, multivariate 
nested bias correction (MNBC) approaches of Mehrotra and Sharma 
(2015; 2016) and Mehrotra et al. (2018) are quite effective in correcting 
for dependence biases (Zhu and Zhao, 2018). Following this, we adopt 
daily QM as our base BC model and apply it at each location and to each 
variable separately. More complex BC alternatives are added subse
quently to this base model in a stepwise manner until the optimally 
robust configuration is reached. More details on the approach are pre
sented later. The general structure of both QM and MNBC approaches is 
discussed in brief here. 

3.1. Quantile mapping (QM) 

The bias correction formulation of QM is based on equation (1) 
following Li et al. (2010). 

Z
′

m,f = Žm,f +

{

F− 1
o

(

Fmf

(

Žm,f

))

− F− 1
mc

(

Fmf

(

Žm,f

))}

(1) 

In which F (.) is the empirical cumulative distribution of either ob
servations (o) or model (m) for a historical training period or calibration 
or current climate (c) or future projection or validation period (f). (Ž) is 
the raw and Z′ is the bias corrected time series. The same notation is used 
hereafter to define pre BC or raw (Ž) and post BC or bias corrected (Z′ ) 
series. Also, multivarite matrices and variables are expressed as bold 
while univariate and scalars are expressed as non bold characters. 

3.2. Multivariate nested bias correction (MNBC) 

A full multivariate BC that maintains the observed LAG1 and LAG0 
cross dependence in the bias corrected time series Z′ g

t , is given by 
(Mehrotra and Sharma, 2015, 2016): 

Z′ g
t =CZ′ g

t− 1 + DF− 1Žg
t − DF− 1EŽg

t− 1 (2)  

where, Ž and Z′ are raw and bias corrected time series of climate vari
ables and matrices C, E, D and F are the LAG0 and LAG1 cross corre
lations of observed and raw current climate GCM series of variables. 
Expressions for the matrices C and E or D and F are obtained following 
Matalas (1967) as follows: 

Table 1 
Details of models used in the study (from CB15).  

MODEL INSTITUTE OCEAN 
RESOLUTION 
(◦) 

ATMOSPHERE 
RESOLUTION (◦) [km 
at Equator] 

ACCESS1.0 CSIRO-BOM, 
Australia 

1.0 × 1.0 1.9 × 1.2 [210 × 130] 

CanESM2 CCCMA, 
Canada 

1.4 × 0.9 2.8 × 2.8 [310 × 310] 

CNRM-CM5 CNRM- 
CERFACS, 
France 

1.0 × 0.8 1.4 × 1.4 [155 × 155] 

GFDL-ESM2M NOAA, GFDL, 
USA 

1.0 × 1.0 2.5 × 2.0 [275 × 220] 

HadGEM2-CC MOHC, UK 1.0 × 1.0 1.9 × 1.2 [210 × 130] 
MIROC5 (for non- 

commercial use 
only) 

JAMSTEC, 
Japan 

1.6 × 1.4 1.4 × 1.4 [155 × 155]  
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C or E=M1M− 1
0 and DDT or FFT = M0 − M1M− 1

0 MT
1 (3)  

where, M0 and M1 are, respectively, the LAG0 and LAG1 cross- 
correlation matrices of observed/raw current climate GCM daily time 
series of variables as appropriate. D or F is found by singular value 
decomposition. The elements of M0 and M1, corresponding to variables i 
and j, are obtained from the observed/raw current climate GCM time 
series Z using equation (4). 

mi,j
0 =

∑N

t=1
Zi

t Z
j
t

/

N (4a)  

mi,j
1 =

∑N

t=1
Zi

t Z
j
t− 1

/

(N − 1) (4b) 

Similarly, for monthly or seasonal periodic time series, different 
matrices for each month/season are used. Parameters of these periodic 
matrices are obtained using equation (5) following Salas (1980). 

Cτor Eτ =M1,τM− 1
0,τ− 1 and DτDT

τ or FτFT
τ = M0,τ − M1,τM− 1

0,τ− 1MT
1,τ (5)  

where, τ represents month or season, M0,τ and M1,τ are, respectively, the 
LAG0 and LAG1 cross-correlation matrices of observed/raw GCM 
monthly/seasonal time series of variables as appropriate. The elements 
of M0,τ and M1,τ are obtained using equation (4) in a manner similar to 
the case with constant parameters. 

Models of multivariate time series at multiple levels usually involve a 
large number of parameters to account for the cross and auto and lagged 
time dependences. In situations where lagged cross correlations are 
either not important or significant, a contemporaneous model with 
reduced number of parameters can be formed by considering matrices C 
and E as diagonal matrices and ignoring the LAG1 cross correlations 
(Salas 1980; Salas et al., 1985). The diagonalisation of the parameter 
matrices C and E allows applying a univariate procedure for parameter 
estimation of these matrices. The elements of C and E corresponding to 
variables i and j are expressed as: 

Ci,j or Ei,j =M1(i,j) , if i = j; Ci,j or Ei,j = 0 , otherwise (6a)  

DDT
i,j or FFT

i,j =M0(i,j)

(
1 − M1(i,i)M1(j,j)

)
6b)  

Cτ(i,j) or Eτ(i,j) =M1,τ(i,j), if i = j; Cτ(i,j) or Eτ(i,j) = 0 , otherwise
(6c)  

DDT
τ(i,j) or FFT

τ(i,j) =M0,τ(i,j) − M1,τ(i,i)M0,τ− 1(i,j)M1,τ(j,j) (6d) 

Similar to MNBC variants (Mehrotra and Sharma 2012, 2015), two 
different auto-regressive multivariate models are considered – the one 
with constant parameters for the daily and annual time series and, 
another with periodic parameters for the monthly and seasonal time 
series (Salas, 1980). 

If only LAG0 cross correlations are of interest then the above equa
tions are simplified as: 

Z′ g
t =DF− 1Žg

t (7)  

where, Ž and Z′ are pre and post bias corrected series and matrices D and 
F are the LAG0 cross correlations of observed and GCM series. The el
ements of D and F are obtained by using equation (4a). Similarly, if only 
LAG1 correlations are of interest then the multivariate correction is not 
required and a standard univariate autoregressive LAG1 model for in
dividual variable is considered (Johnson and Sharma, 2012): 

Z′ g
t = rhZ′ g

t− 1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (rh)
2

√
⎛

⎝Žg
t − rmŽg

t− 1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (rm)
2

√

⎞

⎠, (8)  

where, Z′ g
t is the bias corrected time series for time step t, rh is the 

observed and rm is the GCM time series LAG1 correlations. 

3.3. Robust Multivariate Bias Correction (RoMBC) 

The modelling strategy proposed here is termed as Robust MBC 
(RoMBC). We describe the primary statistical attributes using distribu
tion/statistics, and dependence attributes using the LAG0 and LAG1 
auto and cross correlations. Similar to other variants of a Multivariate 
BC model, the RoMBC bias correction considers four popular bias 
correction time scales - daily, monthly, quarterly and annual. The model 
structure evolution procedure operates in stages, from univariate to 
multivariate and from one time-scale to the next. At each time scale, the 
approach evaluates the reparations of bias correction application in 
stages, first in LAG1 auto dependence of the individual variables and 
thereafter for LAG0 cross dependence across variables for both cali
bration and validation (current and future) time periods. 

As mentioned before, the first stage of the approach is to apply 
univariate QM at a daily time scale and univariate variance correction at 
higher aggregated time scales, individually to all variables and loca
tions. This forms the base bias corrected time series to be used as a 
reference to assess the need for the more complex BC alternatives that 
are assessed next. 

The next stage is to examine the necessity and the applicability of BC 
in dependence attributes at daily, monthly, seasonal and annual time 
scales. The dependence attributes are defined in terms of LAG1 auto
correlation and LAG0 cross correlation attributes at all four time scales. 
The aim here is to specify a BC model structure that is appropriate at that 
time scale. The assessment of dependence attributes in bias correction is 
conducted in a stage-wise manner at each time scale. The sequence of 
these BC stages includes, LAG1, LAG0, a contemporaneous (L1C) and 
finally a full model (L1F). For LAG1 only dependence, being a univariate 
correction, the procedure is conducted separately at each location and 
for each variable and the BC model varies across variables, while for 
cross dependence, joint collective assessment is undertaken. At each 
time scale, the final BC is applied only when the assessment at all four 
stages is completed. 

At each BC stage, the assessment is performed in two steps that are 
designed to be intuitive and straightforward. In the first step, called 
hereafter as ‘Necessity Check’, the base time series is evaluated to assess 
if the BC procedure being considered is necessary by comparing the 
current climate dependence statistics with those representing the 
observed record. If this difference is found statistically unimportant, 
there is no need of applying the bias correction in the dependence 
attribute considered and we proceed on to the next stage. The second 
step of checking the applicability of BC in validation/future is called the 
‘Applicability Check’ and is initiated only if the difference is found 
significant at the first step. In the second step the BC is applied to the 
future climate time series and the bias corrected time series is assessed to 
see if the application of BC brings in significant changes in extreme 
values or designated statistics in comparison to those obtained using the 
base case simulation. If these changes are found statistically significant, 
the BC procedure is ignored and the correction at the next stage is 
considered. The following describes in brief the two step criteria 
adopted. 

3.3.1. Necessity check 
The structure of the necessity check procedure remains the same for 

all BC stages. For LAG1, this involves assessing LAG1 correlations of 
individual variables while for LAG0 these represent cross correlations 
across variables. For brevity, both are simply denoted as correlations 
here. For a given location (and variable) let the correlations of observed 
and GCM current climate series be denoted as (ro) and (rg), respectively. 
For daily series, these are calculated for each day of the year using a 
moving window of 31 days centred on the day of interest. The user is 
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allowed to change the length of the moving window through a param
eter in the data file. The significance of difference of observed and 
current climate correlations is assessed using Fisher Z test statistic as 
shown in equation (9) at 5% level of significance (significant if Fisher Z 
value > 1.96). In the equation No and Ng, respectively, are the number of 
observed and GCM data points used to calculate correlations. 

Fz =

⃒
⃒zo − zg

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(No − 3) +
1

(Ng − 3)

√ and zo =
1
2

ln
(

1 + ro

1 − ro

)

and zg =
1
2

ln
(

1 + rg

1 − rg

)

(9)  

with daily data the process is repeated for all 365 calendar days while for 
monthly and seasonal data for each month/season. If out of 365 days/12 
months/4 seasons, this difference is found statistically significant for 
more than 1% of time, bias correction of correlation is assumed to be 
needed. This is denoted as the necessity check. Note that the ‘5% level of 
significance’ is a common choice in hydrology while threshold of ‘1% of 
time’ was picked following a sensitivity analysis by varying it from 0.05 
to 5% and 1% was found to provide satisfactory performance on the data 
used. The second step is applicability check and is explained next. 

3.3.2. Applicability check 
If the necessity check suggests that a dependence correction is 

needed, the next step is to check the impact of the dependence correc
tion on the future climate time series. The dependence correction is 
applied to the base future climate series and the percent of time the bias 
corrected values cross designated lower or upper practical limits, is 
noted. Also, the means (AVs) and standard deviations (SDs) of the pre 
and post bias corrected series are calculated and compared to check if 
the correction has made any significant changes in the AV or SD of the 
time series by using equation (10), again at 5% level of significance: 

|AVPost − AVPre| > 1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
SD2

Pre + SD2
Post

)/
N

√

(10a)  

if SDPre > SDPost SD2
Pre
/

SD2
Post

> 1.96

if SDPost > SDPre SD2
Post
/

SD2
Pre

> 1.96
(10b) 

Here N is number of data points and pre and post subscripts represent 
the statistics before and after the application of bias correction. These 
equations check the significance of the differences of statistics at the 5% 
significance level. If upper and lower limits are crossed more than 1% of 
time or the difference of the statistics (equation (10)) exceeds the 
specified threshold by more than 1%, this BC model is not considered. 
Our aim here is to make sure that we do not allow the BC to change the 
future irrationally and end up having few very high/low values. As 
mentioned before, the thresholds at 95% level of confidence is a 
commonly used choice while the ‘1% of time’ is used to define a check 
on the BC procedure as it would not be violated under normal condi
tions. The 1% threshold chosen was found to perform well based on 
sensitivity assessments across GCMs and a range of variables being 
corrected. 

Once all the correction stages at a given time scale are assessed, the 
final selected bias correction model is applied at that time scale. The bias 
corrected time series is then aggregated/averaged to the next time scale 
and the same procedure is repeated. The time scales adopted and sta
tistical attributes considered represent common choices the developers 
and other researchers have found important for water resources appli
cations. The approach is quite flexible and allows users to accommodate 
alternate representations of time scales as well as other statistical at
tributes (Johnson and Sharma 2012; Mehrotra and Sharma 2012, 2015). 

The following describes the stepwise procedure adopted in the 
implementation of RoMBC. 

3.4. Stepwise RoMBC procedure 

The complete bias correction procedure is divided into three parts. 
Part A deals with the formulation of base series in the form of a uni
variate primary bias correction. Part B is core of RoMBC and deals with 
the checking and application of complex bias correction procedures at 
each time scale. Part C aggregates the time series to higher time scale 
and repeats the part B. Steps involved in these parts are discussed next. 

3.6.1. Part A – defining the primary base BC series 

1. Calculate monthly, seasonal and annual means and standard de
viations of all the variables of the observed (Zh

t ) time series. Also, 
calculate daily, monthly seasonal and annual LAG1 auto and LAG0 
and LAG1 cross correlations of variables. Use a moving window of 31 
days (or the number of days as specified by the user) centred on the 
current day of interest while calculating the statistics for the daily 
data (Rajagopalan and Lall, 1999; Sharma and Lall, 1999).  

2. Consider a variable at a location/grid point. Apply QM to the daily 
data by fitting an empirical Cumulative Distribution Functions 
(CDFs) to the observed (Zh

t ) and raw GCM series (Ẑt) for current and 
future climate. For a given value in the future climate GCM series, 
calculate the cumulative probability and obtain the difference of 
observed and GCM current climate values for this cumulative prob
ability from the corresponding CDFs (Bias). Obtain the correspond
ing value for this cumulative probability from the future climate 
CDF. Apply the difference to the value to obtain the bias corrected 
value for the future climate. Repeat the same procedure for every 
data point and obtain the bias-corrected daily time series for current 
and future climates. Note these form univariate corrections for each 
variable with no consideration is given to cross-dependence biases 
that may be present.  

3. Aggregate the daily QM corrected time series to monthly time scale. 
For standard deviation (SD) correction, assess the difference of 
observed and current climate monthly SDs using equation (10b). If 
this difference is found statistically significant for more than 1% of 
time, bias correction of SD is needed. This is denoted as the necessity 
check.  

4. For the applicability check, apply SD bias correction to future 
monthly time series. Check the significance of the SD corrections by 
noting the percent of time the corrected monthly values cross the 
theoretical lower and upper limits. Also, count the percent of times 
AVs and SDs of post BC series are different from pre BC (Raw 
aggregated monthly series) using equation (10). If series passes the 
applicability check, apply SD correction to both current (c) and 
future (f) daily time series. 

Y′ g,c
j,i,k =

(

Ŷ
g,c
j,i,k − μg,c

j,k

)(σh
j,k

σg,c
j,k

)

+ μg,c
j,k (11a)  

Y′ g,f
j,i,k =

(

Ŷ
g,f
j,i,k − μg,f

j,k

)(σh
j,k

σg,c
j,k

)

+ μg,f
j,k (11b)  

where, μg,c
j,k is mean of current, μg,f

j,k is mean of future, σh
j,k is SD of observed 

and σg,c
j,k is SD of current climate time series for jth month and kth vari

able. Similarly, Ŷ
g,c
j,i and Y′ g,c

j,i,k and, Ŷ
g,f
j,i and Y′ g,f

j,i,k are monthly time series 
before and after SD correction, for current and future climate for kth 
variable, jth month and ith year.  

5. Aggregate both current and future climate time series monthly bias 
corrected time series to seasonal and annual time scales and check 
for the applicability of SD correction.  

6. Finally, incorporate the changes at all time scales by modifying the 
daily time series as follows: 
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Ź′
g

t,j,s,i,k =

⎛

⎜
⎝

Y′ g
j,s,i,k

Ŷ
g
j,s,i,k

⎞

⎟
⎠x

⎛

⎝
X′ g

s,i,k

X̂
g
s,i,k

⎞

⎠x

⎛

⎜
⎝

A′ g
i,k

Â
g
i,k

⎞

⎟
⎠x ´​ Z

g
t,j,s,i,k (12)  

where Y′ g
j,s,i,k is the monthly corrected value, Ŷ

g
j,s,i,k the aggregated 

monthly value, X′ g
s,i,k the seasonal corrected value, X̂

g
s,i,k the aggregated 

seasonal value, A′ g
i,k the yearly corrected value and Â

g
i,k the aggregated 

yearly value. In equation (12), subscript k stands for variable, t for day, j 
for month, s for season and i for year. Do it for both current and future 
climate time series.  

7. Store the daily distribution and higher time scales SD corrected time 
series of individual variables (Y′ g

j,s,i,k) for current and future climate.  
8. Repeat steps 1–7 for other variables and locations. 

The above steps form the base or reference bias corrected time series 
which is corrected for essential biases in daily distribution and vari
ability at monthly, seasonal and annual time scales. The base series is 
now used to define the practical lower and upper limits on the data and 
forms the starting step to test and apply more complex dependence at
tributes based BC models (4 in all, LAG1, LAG0, contemporaneous and 
full). It should be noted that if a more complex BC model is accepted to 
be valid, the base bias corrected time series at that time scale is updated 
only at the end of the fourth stage to define a new reference. The 
practical lower and upper limits are used to additionally validate the 
advanced bias correction stages. The daily, monthly, seasonal and 
annual upper and lower limits on individual variables at all locations for 
both current and future climates are formed by calculating the standard 
deviations (SDs) and maximum and minimum values of the entire time 
series at all four time scales. The maximum limit is defined as the 
maximum value in the entire time series plus SD and minimum limit as 
minimum value in the entire time series minus SD as per the following: 

Maximum limit = max(Y ′ g
+ SD(Y ′ g

)) (13a)  

Minimum limit = min(Y ′ g
− SD(Y ′ g

)) (13b)  

for current and future climate, at each time scale, location and for all 
variables. The daily limits are further checked against the physical lower 
and upper limits specified by the user. For example, with rainfall as a 
variable, the lower physical limit is zero and if the practical limit given 
by equation (13b) is less than zero, it is set as zero. 

The next stage is to examine the necessity and applicability of BC in 
dependence attributes at daily, monthly, seasonal and annual time 
scales. The aim here is to identify a suitable BC model structure that is 
appropriate at that time scale. A flow chart presented in Fig. 2, high
lights the procedure adopted in part B. The steps involved are as follows. 

3.6.2. Part B – assessing checking and applicability of dependence BC 
model structure at each time scale  

9. Start with daily data. Consider GCM current and future climates 
daily base time series as obtained from step 8. Consider each 
variable and calculate LAG1 auto correlations of observed and 
GCM current climate series.  

10. For each day of the year assess the difference of observed and 
current climate LAG1 auto correlations using equation (9). If this 
difference is found statistically significant for more than 1% of 
time, bias correction of Lag 1 auto correlation is needed. This is 
denoted as the necessity check.  

11. For the applicability check, apply LAG1 auto bias correction to 
future daily time series using equation 8 and check the signifi
cance of the bias correction (applicability check) by noting the 
percent of time the corrected daily values have crossed the lower 

and upper limits. Also, count the percent of times means and SDs 
of post BC series are different from pre BC (base) series using 
equation (10). If series passes the applicability check, the LAG1 
bias correction forms as our plausible BC model for this variable 
and time scale.  

12. Repeat the above steps for other variables. Store the results of all 
variables.  

13. Next, assess the need for LAG0 cross-dependence correction. 
Calculate observed and current climate LAG0 cross correlation 
matrices of base model corrected daily time series considering all 
variables. Repeat step 10 and assess the need of bias correction.  

14. If BC is needed then form future climate LAG0 bias corrected 
series by using equation (7). Repeat step 11 to check for the 
statistical significance of the changes. Note if the changes are 
statistically significant or not. Move to the next stage.  

15. Check the need of a contemporaneous BC model (L1C). Calculate 
LAG0 and LAG1 cross correlations of observed and daily current 
climate base time series considering all variables/locations. 
Repeat step 10 and assess the need of bias correction considering 
LAG0 and LAG1 auto correlations. If test suggests the need of a 
bias correction, go to next step otherwise move to next stage. 

Fig. 2. Flow chart of modelling philosophy used. Base time series refers to daily 
QM corrected and variance corrections checked and applied at higher time 
scales. There are two loops in the whole procedure, one for four dependence 
statistics (LAG1, LAG0, L1C and L1F) and another for time nesting at monthly, 
seasonal and annual time scales. 
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16. Calculate LAG0 and LAG1 correlation matrices of observed and 
daily current climate base time series considering all variables/ 
locations using equations (4) and (6). Apply bias correction to 
future climate series using equation (2).  

17. Repeat step 11 to check for the statistical significance of the 
changes. Note if the changes are statistically significant or not. 

18. Check the need of a full BC model (L1F) by repeating the pro
cedure mentioned in steps 15–17.  

19. Now assessment of all 4 BCE models at daily time scale is finished. 
If no model is suggested, do not apply any correction and move to 
the next time scale. If a full (L1F) or contemporaneous model 
(L1C) is picked, just apply that model to both current and future 
climate time series and move to the next time scale. If a LAG0 
model is suggested, apply LAG0 model and see for the applica
bility of LAG1 model for individual variables. 

3.6.3. Part C – aggregating series and assessing optimal BC model structure 
for the next aggregated time scale  

20. Aggregate the time series to higher time scale(s) and check for the 
necessity and applicability of all the four BC model structures by 
following the procedure specified in steps 9 to 19.  

21. Incorporate the corrections at all time scales into the daily series 
by using the aggregated and bias corrected time series at 
monthly, seasonal and annual time scales and equation (12). 

It should be noted that if there are no significant biases in auto or 
cross-dependence attributes at the original (daily) time scale, or if the 
correction results in significant changes to the future climate simulation, 
the base model would be retained and will be used to form the time 
series at the aggregated time scale (Part C). If similar outcomes result at 
aggregated time scales, the end model will be the base model defined in 
Part A. Also note that the auto-correlation corrections can differ from 
variable to variable, creating corrected time series that have been pro
cessed using the minimal complexity model that is applicable. 

4. Results 

We apply univariate QM, multivariate quantile based NBC (hereafter 
called as MBC) and RoMBC to the daily rainfall and evaporation time 
series of 6 GCMs at 21 locations, including 18 rainfall and 3 evaporation 
points/stations, over the Greater Sydney region. For MBC, single itera
tion with QM correction at daily and SD and L1C bias corrections at 
daily, monthly, seasonal and annual time scales, was chosen. For GCM 
current climate, a 30 year time window spanning over 1976–2005, and 
for the future climate, three 30 year time windows from 2010 to 2039, 
2040–2069 and 2070–2099, are considered. For space limitation, before 
presenting the overall results of all GCMs, we present and discuss 
detailed results for one representative GCM, ACCESS, only for one time 
window, 2070–2099, centred around 2085. 

Table 2 presents the finalised structure of the flexible bias correction 
model. In the table, correction criteria are shown by zeros and ones. A 
‘one’ with a star, ‘1*‘, implies that the statistic is directly applied or is 
‘built in’ as a part of model structure. A zero (0) implies bias correction 
for that statistic is not needed while one (1) implies correction is needed 
as per the current climate. Negative one (− 1) implies that while the 
correction is necessary, application of bias correction to the future 
climate time series makes the changes significant and therefore the 
correction is not applied. 

Some specific findings can be drawn from Table 1. For all locations 
and variables, daily LAG0 and LAG1 dependence attributes are signifi
cantly different in the raw GCM series for the current climate and hence 
require corrections. However, as bias correction changes the statistics of 
the future time series quite significantly, the correction is ignored. LAG1 
correction to evaporation time series was needed and applied. Monthly 
and seasonal LAG0 and L1C statistics require corrections and correction Ta
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for L1C is applied as it also includes correction for LAG0. Statistics at 
annual time scale does not require any corrections. Thus, the flexible 
model suggests a BC structure which is more complex than a traditional 
QM, however, is much simplified than a rigid multivariate BC (MBC) 

although is does involve a complex full model (L1F) structure in the 
model identification exercise. 

Figs. 3 and 4 present a comparison of the three approaches in the 
form of scatter plots of selected observed and bias corrected statistics of 

Fig. 3A. A few distributional statistics of the observed and GCM bias corrected data for the current climate.  
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general interest for current and future climates, respectively, for ACCESS 
GCM. Considering current climate results (Fig. 3a), the mean is repro
duced well by all the models (top two rows, Fig. 2a). Annual SDs are also 
well reproduced by all the models except for the SD at one location by 
QM (row 3, Fig. 3a). Other statistics of interest, for example, daily 
maxima and annual 5th percentile values and lowest annual 3, 5 and 7 
years totals are also well reproduced by all the three models considered 
(rows 4–6, Fig. 3a). Fig. 3b presents a few distribution and dependence 
statistics of observed and BC results. Lag1 and LAG0 cross correlations 
are better reproduced by MBC. As expected, RoMBC results are better 
than QM but not as good as MBC, more specifically for annual statistics. 
Considering results for the current climate, selecting MBC would be a 
reasonable choice. Bottom two rows of Fig. 3b present daily and annual 
rainfall distribution of observed and models simulated time series. All 
models are able to reproduce daily and annual distribution behaviour of 
observed rainfall. As QM is applied to daily data only, reproduction of 
observed annual distribution in the BC series indicates relatively good 
quality of raw GCM data over the study region for this statistic. 

Now consider results for future climate as presented in Fig. 4 for 
ACCESS GCM for the time window, 2070–2099. Mean changes are 
shown in the top two rows of Fig. 4a. Annual rainfall shows almost no 
change while the three evaporation stations (top circles in the plots) 
show increases in annual evaporation. Seasonal rainfall shows increases 
in spring and summer while slight decreases in autumn and winter 
seasons. All BC models project similar increases in the annual and sea
sonal means. Annual SDs show some scatter with QM projecting slight 
under estimation of the statistic (3rd row, Fig. 4a). Daily maxima and 
annual 5th percentiles and lowest annual averages show no changes for 

rainfall and increases for evaporation values. All models project similar 
results (4th - 6th rows, Fig. 4a). Top two rows of Fig. 4b present scatter 
plots of LAG1 and LAG0 cross correlations. All models show some scatter 
for these statistics, more specifically at the annual time scale. Daily and 
annual distribution of rainfall at a representative station 1 shows no 
notable changes albeit a few extreme daily values by MBC (bottom two 
rows, Fig. 4b). These results indicate no substantial loss of information if 
we selectively apply bias correction using RoMBC. 

We now look at the projected changes in the average and extreme 
rainfall statistics in the future considering all GCMs. It may be noted that 
the climate models exhibit high variations across them in the projected 
changes with MIROC projecting increases in rainfall and CNRM and 
GFDL projecting decreases in rainfall in the future over the study area. 
Table 3 presents the percent changes in annual rainfall and evaporation, 
averaged across all GCMs, for all catchments and for three time win
dows. Similarly, Fig. 5 presents changes in annual rainfall, annual wet 
days, lowest 7 years totals and daily maximum rainfall as projected by 
all six GCMs by 2085 over all catchments using all BC models. Percent 
changes are derived by comparing the changes in the future with respect 
to current climate. In the figure, X axis shows all 18 catchments 
considered whereas on Y axis, percent changes are plotted. Similarly, 
statistics of individual GCMs are shown as thin lines, of no changes as 
black dotted lines and GCMs averaged values as thick black lines. Lines 
across catchments are joined for the sake of presentation only. Consid
ering the models averaged results as presented in Table 3 and Fig. 5, all 
BC models project around 1–4 percent decrease in rainfall during 
2010–2039, a similar percent increase during 2040–2069 and again a 
similar percent decrease during 2070–2099 time periods over the study 

Fig. 3B. A few dependence statistics of the observed and GCM bias corrected data for the current climate.  
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Fig. 4A. Same as Fig. 2A for future climate (2070–99).  
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region (top row of Fig. 5). Evaporation stations show around 5% in
crease during 2010–39, 11–12% during 2040–69 and 22–25% increase 
during 2070–99 time periods. Percent changes in bias corrected rainfall 
and evaporation results are in line with those projected by the raw GCMs 

(Table 3). Changes are, in general consistent across catchments and 
GCMs with MIROC being the wet model and GFDL and CNRM being the 
dry ones (Fig. 5). All BC models project around 5% increase in the 
number of wet days in a year over the study catchments by 2085 (second 

Fig. 4B. Same as Fig. 2B for future climate (2070–99).  

Table 3 
Percent changes in annual rainfall and evaporation averaged across GCMs.  

Rain/EVP Locations Time periods – RAW data Time periods – QM data Time periods – MBC data Time periods – RoMBC data 

2010–39 2040–69 2070–99 2010–39 2040–69 2070–99 2010–39 2040–69 2070–99 2010–39 2040–69 2070–99 

1 − 5 3 − 5 − 4 2 − 4 − 4 2 − 4 − 4 2 − 5 
2 − 5 3 − 5 − 4 2 − 4 − 4 1 − 4 − 4 0 − 5 
3 − 5 4 − 2 − 3 2 − 1 − 3 7 2 − 3 − 2 − 1 
4 − 5 4 − 2 − 3 3 − 2 − 1 5 1 − 4 1 − 2 
5 − 5 5 − 1 − 4 4 − 1 − 1 8 1 − 5 2 − 2 
6 − 5 5 − 2 − 4 4 − 1 − 1 7 2 − 5 5 − 1 
7 − 5 5 0 − 5 5 0 − 5 5 − 3 − 5 4 − 2 
8 − 4 5 − 2 − 4 4 − 2 − 2 4 0 − 4 4 − 3 
9 − 5 5 0 − 5 5 0 − 4 9 − 1 − 4 2 − 1 
10 − 4 5 − 3 − 3 4 − 2 − 2 5 − 1 − 4 5 − 3 
11 − 3 5 − 3 − 3 4 − 2 − 2 3 − 3 − 4 1 − 4 
12 − 3 5 − 3 − 3 4 − 2 − 3 1 − 3 − 4 3 − 3 
13 − 3 5 − 3 − 2 4 − 2 − 2 4 − 2 − 4 2 − 4 
14 − 3 5 − 2 − 2 4 − 2 − 2 3 − 2 − 4 3 − 3 
15 − 2 5 − 3 − 2 4 − 2 − 1 3 − 2 − 3 11 − 3 
16 − 2 5 − 4 − 2 4 − 4 0 6 − 1 − 2 5 − 4 
17 − 2 5 − 5 − 1 4 − 5 2 7 − 2 − 1 4 − 3 
18 − 4 5 1 − 2 2 0 1 5 3 − 5 − 1 − 1 
1 7 18 28 8 20 32 3 11 27 6 19 34 
2 2 8 15 2 8 15 3 7 15 3 9 15 
3 5 13 23 6 15 26 7 15 25 7 15 26  
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Fig. 5. Percent changes in a few rainfall statistics by 2085 as projected by six GCMs and three BC models over the catchments.  

Fig. 6. Distributional changes in the catchment-averaged daily and annual rainfall by 2085 as projected by six GCMs and three BC models.  
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row, Fig. 5). Fig. 5 also includes the changes in daily maximum rainfall 
by 2085 (third row, Fig. 5). QM projects no appreciable changes in the 
catchment averaged daily maximum rainfall over the study region. MBC 
Projects 15% while RoMBC projects about 10% increase in the daily 
extreme rainfall in the future over the study catchments. As mentioned 
before, the rigid application of BC in MBC might force a few data points 
to take high or low values in order to match the observed dependence 
characteristics. RoMBC checks for this possibility at each time scale 
before applying BC and possibly avoids such instances. Percent changes 
in the lowest 7 year rainfall are presented in the last row of Fig. 5. QM 
shows no changes, MBC around 10–15% while RoMBC projects around 
10% decreases in the statistic by 2085 over the study region. This sta
tistic kind of represents the low frequency behaviour of the time series 
and is important for water resources management and water availability 
related applications. As QM is applied only at daily time scale, it is 
insensitive to the biases in the low frequency variability. 

Fig. 5 presents the distributional changes of the catchments averaged 
time series formed by taking the average of catchment rainfall and 
evaporation over the region. Top two rows present the temporal distri
bution of monthly rainfall and evaporation while the changes in the 
probability distribution of area averaged daily and annual rainfall are 
presented in the bottom two rows. All BC models projects rainfall to 
increase in summer and decrease in spring. No shift of season is noted. 
Monthly evaporation shows lowest increase in June and maximum in
crease in November. Surprisingly, this increase does not occur during 
summer months. Perhaps, increase in summer rainfall (and more rainy 
days) causes the evaporation to be lower on the rainy days. Distribution 
of area averaged daily rainfall (only extreme values) is shown in the 
third row of Fig. 6. QM does not show any significant changes in the 
extreme daily values in relation to the observed values. RoMBC results 
are in between QM and MBC with a mild increase in very extreme daily 
values by 2085. Considering distribution of area averaged annual rain
fall (last row of Fig. 6), QM projects negligible changes in the shape of 
the annual rainfall distribution, with a slight reduction in the higher 
quantile rainfall by 2085. MBC and RoMBC project a few more dry years 
with minor changes in the shape of the distribution at both lower and 
higher ends. 

4.1. RoMBC details 

RoMBC is implemented in a R shell and allows the bias correction 
approach to be applied in a fairly simple manner. 

4.1.1. Input data 
The software requires information about data in the form of four files 

in a specific format. These include observed and raw data files for 
calibration (current climate) as well as verification (future climate) time 
periods. When dealing with GCM current and future climates data, the 
package uses three files (observed and GCM/RCM current and future 
climates raw data files. In this case, the observed verification period file 
will be same as observed calibration period file. In this set up, the 
observed data is used to compare the changes in each variable in the 
future. It is not necessary to have equal length of data for raw and 
observed file either for calibration or verification periods. Users are 
allowed to define their own seasons. 

In addition to the names of the four data files, all other general in
formation is provided through the ‘basic.dat’ file (Table 4). It includes 
the information about the number of years of data, number of variables, 
width of moving window used to correct the daily data, physical lower 
and upper limits on the variables, whether data consider leap years or 
not and the split of calendar months across the seasons being modelled. 
All the information is provided in a free format, separated by spaces. At 
present, the package allows for a maximum of 150 years of daily data, 30 
variables, 12 seasons and 31 day moving window. 

4.1.2. Package outputs 
Upon successful completion of the program, 6 output files are 

generated. Two files contain the bias corrected time series for the cur
rent and future time periods. Remaining four files contain a few common 
statistics of the observed, raw and bias corrected data for the current and 
future climate as per the followings: 1) observed and raw data for cur
rent climate; 2) observed and raw data for future climate; 3) observed 
and bias corrected data for current climate; and 4) observed and bias 
corrected data for future climate time periods. As for GCM/RCM future 
climate data corrections, the observed file would be same as the 
observed file for current climate; the observed statistics would not 
change while we move from current to future climate. Statistics 
considered include, means, standard deviations, skewness, LAG1 and 
LAG2 auto correlations. When multiple variables or locations are cor
rected then auto and LAG1 cross correlations are also computed. The 
package allows the users to look at raw and bias corrected statistics 
either in the form of a table or as plots at multiple time scales of interest. 
Finally the package also provides plots of the empirical cumulative 
probability distributions of the observed and raw and observed and bias 
corrected time series. 

5. Discussion and conclusions 

Bias correction has now become a standard post-processing proced
ure to correct systematic biases and convert climate model raw output to 
one that is suitable for use in climate change impact assessment studies. 
The majority of existing multivariate bias correction approaches work 
on a pre-defined rigid bias correction model structure without looking 
into the magnitude and nature of biases and their behaviour in the 
future. This study presented a novel approach for specifying the optimal 
structure of a multivariate bias correction model based on the premise 
that a pre-defined fixed bias correction structure does not apply when 
biases are being assessed across time scales, variables and dependence 
attributes, and if imposed, such a bias correction model can provide 
unstable and physically incompatible projections for the future where 
the impact of unneeded structural complexity will be most evident. 
Given this, the approach adopted resided on specifying a base or refer
ence bias correction model, and updating this reference to a new model 
only if (a) systematic biases are noted in the simulations representing the 
observed period using the reference model, and (b) an updated bias 
correction model that addresses the systematic biases in (a) does not, in 
turn, lead to projections of the future that are untenable. Only if these 
conditions are satisfied is the bias correction model updated, and the 
process repeated to extend to all time scales and variables being 
modelled. 

While models have long been formulated with limited data for 
application in scenarios that have not been observed, in most cases these 
models are developed assuming the observational record used in their 
testing and validation exhibits stationarity. As our situation is one where 
the future can be expected to change significantly (at least for temper
ature and hence for evaporation), forming a robust model requires an 
added means for identifying one that will exhibit stability into the 
future. What is different in our approach here is the use of statistics to 
quantify instability, which is performed by defining a base case and 
discarding model formulations that deviate significantly from this 
reference. While the statistics we have chosen here are relevant in the 
water resources context, the choice of attributes that define stability is 
one that should reside with the user based on the applications the 
climate model simulations are intended for. 

An open-source software in R statistical computing environment is 
presented here. It provides an easy means to apply an in-built flexible 
multivariate and multi-timescale bias correction alternative that is self- 
evolving and grows in complexity following the requirement of the raw 
data. Applications of the software along with information about the 
capabilities of the software are demonstrated using a sample dataset. It is 
anticipated that the ease of running the software and the flexibility of 
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Table 4 
Structure of ‘Basic.dat’ file used in the example. 
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exercising a wide variety of options will make it popular for practi
tioners carrying out impact assessments and researchers investigating 
downscaling methods. 

Software Availability 

Name of software package RoMBC. 
Developers: Raj Mehrotra, WRC, Civil and Env. Engg., UNSW Sydney 

E-mail address: raj.mehrotra@unsw.edu.au. 
Ashish Sharma, WRC, Civil and Env. Engg UNSW Sydney E-mail 

address a.sharma@unsw.edu.au. 
Year first available 2021. 
Hardware required standard PC for Windows. 
Software required RGUI or R-Studio. 
Availability and cost: Available free of charge. Software along with 

sample data and help file can be downloaded from the following website 
http://www.hydrology.unsw.edu.au/download/software. 

Programme language Written in R and Fortran. 
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