

BIOM9420

Clinical Laboratory Science

Term 2, 2022

Course Overview

Staff Contact Details

Convenors

Name	Email	Availability	Location	Phone
Kang Liang	kang.liang@unsw.edu.au	Email confirmation prior face-to-face consultation	SEB E8	

School Contact Information

Student Services can be contacted via unsw.to/webforms.

Course Details

Units of Credit 6

Summary of the Course

BIOM9420 explores the science behind clinical diagnostics covering areas of biochemistry, haematology, immunology, imaging and clinical biomechanics as well as the renal and cardiovascular systems. In each of the areas the underlying principles in the measurement of certain physiological parameters will be covered and how they have been used to engineer diagnostic equipment.

Course Aims

Course Objectives

BIOM9420 Clinical Laboratory Science has been designed to provide students with a taste of some of the many different aspects of clinical medicine where Biomedical Engineers are of fundamental importance for the development of instrumentation to diagnose and monitor diseases. The course is focused on the fundamental science that underlies some of the diagnostic tests and the students are encouraged to explore how Biomedical Engineers have taken these fundamentals and made them work within a diagnostic laboratory environment. The course will cover the technologies, tests and operation of a variety of clinical laboratory testing systems (biochemistry, haematology and immunology) and how they apply to a particular organ or system. The students will also be exposed to the underlying principles involved in the measurement of certain physiological parameters from some of the complex organ systems including the urinary, cardiac and gastro-intestinal systems. An important component of the course is two practical sessions. The first focuses on the fundamentals of enzyme biochemistry and how this might be useful in generating a test for a particular disease and the second will build upon this knowledge to design, fabricate and test a diagnostic test strip for glucose.

Aims of the Course

- To enable students to experience different aspects of engineering in clinical laboratory testing systems relevant to biomedical engineers.
- To introduce students to the concept of variability in medicine and biology.
- To develop problem solving skills for the medical field.
- To contextualise the learning

Course Learning Outcomes

- Identify the underlying scientific and engineering principles of a variety of clinical testing and/or diagnostic systems
- 2. Apply problem-solving skills to a variety of case studies in the medical field
- 3. Demonstrate teamwork skills and reflect upon their own strengths and weaknesses while collaborating with others in a team environment
- 4. Produce a scientific report that includes a literature review relevant to a clinical laboratory device or diagnostic tool

EXPECTED LEARNING OUTCOMES

On completion of this course, the student should:

- Identify the underlying scientific and engineering principles of a variety of clinical testing and/or diagnostic systems
- Apply problem-solving skills to a variety of case studies from the medical field.
- Demonstrate teamwork skills and reflect on individual strengths through collaborating with others in a team environment.
- Produce a scientific report and a literature review relevant to a clinical laboratory device or diagnostic.

These learning outcomes will be achieved through maximal participation in area of the structured teaching strategies provided in class time (on-line lectures and activities) as well as student-centred and self-directed learning (private study and completion of assessment tasks)

Teaching Strategies

A combination of lectures and tutorials with the lecturer and course co-ordinators present to answer questions and help students engage; face-to-face with online option (Teams-facilitated) tutorials that contain working groups of 5 – 6 students. Online modules in Moodle are used in this course to provide background and support the lecture material by providing slide shows, some with Q&A, and videos. This will expose students to a range of teaching modes encompassing a range of teaching styles, including passive and active participation.

Private Study	Review lecture material
- Trate Staay	Work through online modules in Moodle
	Work through activities and do set assignments
	1
	Reflect on class problems and assignments
	 Download and work through materials from Moodle
	 Keep up with notices and obtain marks via Moodle
Lectures	 Fundamental content is explained slide-by-slide
	Hear announcements on course changes
• Group conversation to provide context	
facilitated tutorials (workshops,	 Guidance provided on tasks required for
problem solving sessions, group	assignments
activities)	Be involved in the discussion - ask and answer
	questions using video
Assessments (quiz, enzyme activity	Demonstrate your knowledge, critical thought and
assessment, group literature review	problem solving skills
report, group presentation and final	Demonstrate higher understanding of the
examination)	fundamental science and its relevance to biomedical
,	engineering

Assessment

Assignments must be submitted via Moodle by the designated date and time. The Report must contain a **Non Plagiarism Declaration Cover Sheet**

Late submissions will be penalised 5% of the mark for each calendar day late, capped at five days (120 hours), after which a student cannot submit and assessment, and no permitted variation. If you foresee a problem in meeting the nominated submission date, please contact the Course Convenor to discuss your situation as soon as possible.

Assessment marks will be available on Moodle as soon as possible after marking, which will normally be within 2 weeks of submission.

Assessment task	Weight	Due Date	Course Learning Outcomes Assessed
Enzyme Laboratory Report	10%	Not Applicable	1, 2, 3, 4
2. Online Quizzes	10%	At the end of tutorial on Week 7	1, 2
3. Final Exam	35%	Friday week 5	1, 2
4. Literature Review	20%	Friday week 10	1, 2, 3, 4
5. Group video presentation	15%		2, 3
6. Rapid antigen test strip design report	10%		1, 2, 3, 4

Assessment 1: Enzyme Laboratory Report

Enzyme Activity Assessment – "marble" practical (10%) is a group and individual task to teach students how to graph, analyse and present experimental data using MATLAB using the standard scientific format for experimental reports. Requires successful completion of the on-ramp MATLAB course with completion certificate appended to the report together with the risk assessment supplied on Moodle.

Assessment 2: Online Quizzes

Due date: At the end of tutorial on Week 7

Mid□term Quiz (10%) is designed to reflect on the learning of the first few weeks and to encourage review of the course content up to the mid-term flexible week. It will also prepare students for the types of questions and how these are run on Moodle in preparation for the final exam.

Assessment 3: Final Exam

Due date: Friday week 5

Final Exam (Online Final Quiz 10% + Time limited, open book, long answer Exam 25%) (35%)

Assessment 4: Literature Review

Due date: Friday week 10

Literature Review (20%) is completed as a group task designed to provide an opportunity for team-work and independent literature searching on different complementary topic areas relevant to the measurement of glucose in a clinical setting.

Assessment 5: Group video presentation

Group video presentation (15%) is a group report designed to consolidate learning in the assessments and tutorials and bring it all together in a team environment to produce a cohesive and balanced short video presentation.

Assessment 6: Rapid antigen test strip design report

Rapid antigen test strip design report (10%) is a group task designed to enhance students understanding in relevant topics and apply the knowledge in timely clinical and diagnostic settings.

Attendance Requirements

Students are strongly encouraged to attend all classes and review lecture recordings.

Course Schedule

Week	Date	Live Event Lecture	Online Resources	Tutorial	Assessment Due
1	2 Jun	Diagnostic Engineering 1	1. MATLAB introduction – Onramp course	Workshop 1 –	Append MATLAB Course Completion
		Course introduction	Background to group major	Complete MATLAB Onramp course	Certificate to the Enzyme activity report in week 5
		Biomedical Engineering and Diagnostics	report - Glucose Biosensors		
2	9 Jun	Diagnostic Engineering 2	1. Cell & DNA background for week 3	Workshop 2 –	
		Blood Diagnostics Antibody-based	1. Cell cycle video	Group discussion on sources of scientific literature. Compare reviews, journals & scientific reports	
		Diagnostics	1. Exercise on cell cycle	Write an abstract	
			1. Review Enzyme Kinetics Activity Risk Assessment & Quiz		
			Introduction to diagnostics - enzymes		
3	16 Jun	Diagnostic Engineering 3	1. PCR virtual lab	Workshop 3 –	

		DNA, Genetics & PCR Diagnostics	1. Chromosomal disorders 1. Single gene Inheritance	Enzyme Kinetics Activity - Moodle "Marble" practical	
			Genetic testing		
4	23 Jun	Diagnostic Engineering 4	1. Urinary system	Workshop 4 – Rapid antigen test strip design	
		Kidney Function	1. Glomerular filtration1. Diagnosis of type 2 diabetes	Group discussion on how to write a literature review	
5	30 Jun	Diagnostic Engineering 5	1. Worked example - cardiac output	Workshop 5 – Cardiac Monitoring	Enzyme Kinetics Activity Report
		Cardiac Monitoring	1. Worked example - dilution	exercise	Due Friday week 5
			1. Worked example - ECG		
6		Flexible Week	Group video and major report Q&A		
7	14 Jul	Diagnostic Engineering 7	1. Gait video practice	Quiz 1 – on-line (open book)	Quiz 1 Due at end of tutorial time
		Clinical Gait			

		Analysis (online module, no F2F lecture)			
8	21 Jul	Diagnostic Engineering 8	 Imaging tutorial questions 	Workshop 8 –	Rapid antigen test strip design report
		Imaging Modalities		Group discussion & presentation on imaging tutorial question	Due Friday Week 8
				Group video and major report Q&A	
9	28 Jul	Diagnostic Engineering 9	1. 3D lung model	Workshop 9 –	Group Video Due Sunday Week 9
		Lung Function	1. Spirometry and Peak Flow Test	Group discussion and report back on gait function exercise	
10	4 Aug	Review of content		Group video presentations	Major Group Report
					Due Friday week 10

View class timetable

Timetable

Date	Туре	Content
O-Week: 23 May - 27 May		
Week 1: 30 May - 3 June	Lecture	Diagnostic Engineering 1 Course introduction Biomedical Engineering and Diagnostics
	Online Activity	MATLAB introduction – Onramp course Background to group major report - Glucose Biosensors

	Tutorial	Workshop 1 –
		Complete MATLAB Onramp course
	Assessment	Append MATLAB Course Completion Certificate to the Enzyme activity report in week 5
Week 2: 6 June - 10	Lecture	Diagnostic Engineering 2
June		Blood Diagnostics
		Antibody-based Diagnostics
	Online Activity	1. Ovulation test strip design 2. Cell & DNA background for week 3 3. Cell cycle video 4. Exercise on cell cycle 5. Review Enzyme Kinetics Activity Risk Assessment & Quiz 6. Introduction to diagnostics - enzymes
	Tutorial	Workshop 2 –
		Group discussion on sources of scientific literature. Compare reviews, journals & scientific reports
		Write an abstract
Week 3: 13 June - 17 June	Lecture	Diagnostic Engineering 3 DNA, Genetics & PCR Diagnostics
	Online Activity	1. PCR virtual lab 2. Chromosomal disorders 3. Single gene Inheritance 4. Genetic testing
	Tutorial	Workshop 3 –
		Enzyme Kinetics Activity - Moodle
		"Marble" practical
Week 4: 20 June - 24 June	Lecture	Diagnostic Engineering 4
		Kidney Function
	Online Activity	Urinary system Glomerular filtration Diagnosis of type 2 diabetes

	Tutorial	Workshop 4 –
		Group discussion on how to write a literature review
Week 5: 27 June - 1 July	Lecture	Diagnostic Engineering 5
July		Cardiac Monitoring
	Online Activity	Worked example - cardiac output Worked example - dilution Worked example - ECG
	Tutorial	Workshop 5 –
		Cardiac Monitoring exercise
	Assessment	Enzyme Kinetics Activity Report
		Due Friday week 5
Week 7: 11 July - 15	Lecture	Diagnostic Engineering 7
July		Lung Function
	Online Activity	1.3D lung model 2.Spirometry and Peak Flow Test
	Tutorial	Quiz 1 – on-line (open book)
	Assessment	Quiz 1
		Due at end of tutorial time
Week 8: 18 July - 22	Lecture	Diagnostic Engineering 8
July		Imaging Modalities
	Online Activity	1. Imaging tutorial questions
	Tutorial	Workshop 8 –
		Group discussion & presentation on imaging tutorial question
		Group video and major report Q&A
Week 9: 25 July - 29	Lecture	Diagnostic Engineering 9
July		Clinical Gait Analysis
	Online Activity	1. Gait Video
	Tutorial	Workshop 9 –

		Group discussion and report back on gait function exercise
Week 10: 1 August - 5	Lecture	Review of content
August	Tutorial	Group video presentations
	Assessment	Major Group Report
		Due Friday week 10

Resources

Recommended Resources

RELEVANT RESOURCES – Useful Books

 Introduction to Biomedical Engineering (3rd edition) by John Enderle and Joseph Bronzino Publisher: Elsevier/Academic Press, 2011, ISBN: 9780123749796

Digital available - https://unswbookshop.vitalsource.com/products/-v9780080961217

 An Introduction to Clinical Laboratory Science by Connie Mahon, Linda A. Smith and Cheryl Burns. Publisher: Elsevier Health Sciences, 1988, ISBN10 0721649904

Course Evaluation and Development

Student feedback has helped to shape and develop this course, including feedback obtained from online evaluations as part of UNSW's myExperience process. Changes to the course have included revision to the course content by refocusing on the lecture content and balancing this content across the sciences and maths. This course is now designed to run on-line in distance mode.

Submission of Assessment Tasks

Laboratory reports and major assignments will require a Non Plagiarism Declaration Cover Sheet.

Assignments should be submitted on time. A daily penalty of 5% of the marks available for that assignment will apply for work received after the due date. Any assignment more than 5 days late will not be accepted. The only exemption will be when prior permission for late submission has been granted by the Course coordinator. Extensions will be granted only on medical or compassionate grounds under extreme circumstances.

Academic Honesty and Plagiarism

PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise will have their names entered on a plagiarism register and will be liable to disciplinary action, including exclusion from enrolment.

It is expected that all students must at all times submit their own work for assessment. Submitting the work or ideas of someone else without clearly acknowledging the source of borrowed material or ideas is plagiarism.

All assessments which you hand in must have a <u>Non Plagiarism Declaration Cover Sheet</u>. This is for both individual and group work. Attach it to your assignment before submitting it to the Course Coordinator or at the School Office.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at: https://student.unsw.edu.au/plagiarism

Academic Information

COURSE EVALUATION AND DEVELOPMENT

Student feedback has helped to shape and develop this course, including feedback obtained from online evaluations as part of UNSW's as part of UNSW's myExperience process. You are highly encouraged to complete such an on-line evaluation toward the end of Term. Feedback and suggestions provided will be important in improving the course for future students.

DATES TO NOTE

Refer to MyUNSW for Important Dates, available at: https://my.unsw.edu.au/student/resources/KeyDates.html

ACADEMIC ADVICE

For information about:

- · Notes on assessments and plagiarism,
- Special Considerations,
- · School Student Ethics Officer, and
- BESS

refer to the School website available at http://www.engineering.unsw.edu.au/biomedical-engineering/

Supplementary Examinations:

Supplementary Examinations for Term 2 2022 will be held on (TBC) should you be required to sit one.

This course outline sets out description of classes at the date the Course Outline is published. The nature of classes may change during the Term after the Course Outline is published. Moodle should be consulted for the up to date class descriptions. If there is any inconsistency in the description of activities between the University timetable and the Course Outline (as updated in Moodle), the description in the Course Outline/Moodle applies.

Image Credit

Synergies in Sound 2016

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.