Constructing a Price Deflator for R&D: Calculating the Price of Knowledge Investments as a Residual

Carol Corrado, Conference Board, New York Peter Goodridge, Imperial College Business School, Imperial College London Jonathan Haskel, Imperial College Business School, Imperial College London

EMG group, November 2013 Sydney

Objective of paper

- To construct R&D price index
 - Inform forthcoming capitalisation of R&D
 - Inform European heartsearching about R&D spend (as % of GDP) being flat/falling
- Paper
 - First pass
 - Review existing approaches
 - Implement our approach on UK data
 - Robustness checks
- Basic outline of framework: Edison quote
 - "The value of an idea lies in the using of it."

Model outline

- Two sectors
 - knowledge-producing: gets knowledge for free, but charges mark-up
 - knowledge-using: rents knowledge
- Three factors of production
 - labor,
 - capital,
 - knowledge.
- Production and income flow relationships, knowledge stock accumulation, rental/asset prices

$$N_{t} = F^{N}(L_{t}^{N}, K_{t}^{N}, R_{t}^{N}, t); \quad P_{t}^{N}N_{t} = \mu(P_{t}^{L}L_{t}^{N} + P_{t}^{K}K_{t}^{N})$$

$$R_{t} = N_{t} + (1 - \delta_{R})R_{t-1}$$

$$Y_{t} = F^{Y}(L_{t}^{Y}, K_{t}^{Y}, R_{t}^{Y}, t); \quad P_{t}^{Y}Y_{t} = P_{t}^{L}L_{t}^{Y} + P_{t}^{K}K_{t}^{Y} + P_{t}^{R}R_{t}^{Y}$$

$$P_{t}^{R} = P_{t}^{N}(\rho_{t} + \delta_{R})$$

Model outline

$$\Delta \ln P^{N} = s_{N}^{K} \Delta \ln P^{K} + s_{N}^{L} \Delta \ln P^{L} - \Delta \ln TFP^{N}$$

$$\Delta \ln P^{Y} = s_{Y}^{K} \Delta \ln P^{K} + s_{Y}^{L} \Delta \ln P^{L} + s_{Y}^{R} \Delta \ln P^{R} - \Delta \ln TFP^{Y}$$

$$\Delta \ln TFP^{measured} = \Delta \ln TFP^{Y} + s_{Y}^{N} \Delta \ln TFP^{N}$$

Method 1: upstream sector

Use data from R&D survey to measure K and L in "innovation" sector, assume $\mu\text{=}1$

Problem: TFP in the innovation sector not well understood.

Nests as special case Δ InTFP=0, μ =1 price index is shareweighted cost based index:

$$\Delta \ln P^N = s_N^K \Delta \ln P^K + s_N^L \Delta \ln P^L$$

But is Δ InTFP=0 in research sector strong assumption e.g. internet?

So one way is to use assumption on Δ InTFP, say from hi-tech inds

Model outline

Method 2: downstream sector

Rearrange above

$$\Delta \ln P^{R} = \left(\frac{\Delta \ln P^{Y} - s_{Y}^{K} \Delta \ln P^{K} - s_{Y}^{L} \Delta \ln P^{L} + \Delta \ln TFP^{Y}}{s_{Y}^{R}}\right)$$

Aggregate index: which is what we try to estimate

$$\Delta \ln P^{R^*} = \sum_{i=1}^{J} \omega_i \left(\frac{\Delta \ln P_i^Y - s_{iY}^K \Delta \ln P_i^K - s_{iY}^L \Delta \ln P_i^L + \Delta \ln TFP_i^Y}{s_{iY}^R} \right)$$

Note that this nests as a special case just downstream prices

$$\Delta \ln P^{R} = \sum \omega_{j} \Delta \ln P_{j}^{Y}$$

Conceptual issues discussed in paper

• Interpretation:

- Downstream use of knowledge stock R to produce output: can think of as commercialising knowledge
- Downstream renting finished knowledge from upstream. Can think of upstream as producing platform, downstream rent versions
- Model similar to Romer, 1990
 - Ideas sector uses knowledge, produces design blueprints
 - Blueprints patented and sold to production sector, who then produces output
 - So value of knowledge is appropriated by ideas sector, production sector commercialises it
- Theory discussion: theory can be extended to
 - Product quality in the downstream sector

UK data set

- Essence of approach: upstream and downstream sectors. So use industry data?
- No. Much R&D is in-house. So, to implement we need to "break" industries into upstream, R&D producing, and downstream, R&D renting
- Data sets
 - BERD: Business Enterprise R&D = surveys own-account R&D spending by firms. Reported for 32 products (~market sector industries).
 - UK EUKLEMS data set (March 2008 release),
 - prices and quantities of output and labor and material input for 72 industries
 - and estimates of capital input and TFP for 23 industries.
 - UK supply-use (IO) tables, for more than 100 industries from 1992 to 2006.
 - allocate own-acc R&D of R&D services industry to other (i.e., downstream) industries using inputoutput data on sales.
 - VICS: ONS data on capital services at more detailed industry level than EUKLEMS
- Usable final data
 - 29 industry data set, 1981 to 2005. R&D performing industries excluding:
 - the R&D services industry (because its R&D is allocated to purchasing industries using input-output data)
 - software industry and post & telecommunications (problematic TFP data).

Measurement

• Objective: to measure downstream

$$\Delta \ln P_{J}^{R} = \frac{\Delta \ln P_{J}^{G, KLEMS} - s_{Y,G,J}^{M} \Delta \ln P_{J}^{M} - s_{Y,G,J}^{K} \Delta \ln P_{J}^{K} - s_{Y,G,J}^{L} \Delta \ln P_{J}^{L} + \Delta \ln TFP_{J}^{G,Y}}{s_{Y,G,J}^{R}}$$

- What do we have to measure?
 - The downstream materials, labour, capital shares
 - ≠ KLEMS shares, since KLEMS shares are sum of up and downstream
 - So use BERD data to split KLEMS into up- and downstream by subtraction
 - The downstream knowledge capital rental share
 - S(R) downstream = (PrR/PyY).
 - BERD gives us estimate upstream knowledge costs= PnN (measured)
 - Rental price relation between PnN and PrR; T
 - If upstream marks-up over costs then PnN=µ(PnN, measured)
 - => S(R)=μτ(PnN/PyY). Assume μ and τ. Check robustness
 - Downstream Δ InTFP(y): econometric method (below)

Summary of shares

• So, shares are

$$s_{Y,G}^{M} = \frac{P^{M} M^{Y}}{P^{G} G^{Y}} = \frac{P^{M} M^{KLEMS} - P^{M} M^{BERD} - P^{N} N^{IO}}{P^{G} G^{KLEMS}}$$

$$s_{Y,G}^{L} = \frac{P^{L} L^{Y}}{P^{G} G^{Y}} = \frac{P^{L} L^{KLEMS} - P^{L} L^{BERD}}{P^{G} G^{KLEMS}}$$

$$s_{Y,G}^{R} = \frac{P_{t}^{R} R^{Y}}{P^{G} G^{Y}} = \tau \mu \frac{\left(P_{t}^{N} N^{BERD} + P_{t}^{N} N^{IO}\right)}{P^{G} G^{KLEMS}}; \tau = \frac{(\rho + \delta_{R})(1 + \Delta R^{Y,OA} / R^{Y,OA})}{\left(\Delta R^{Y,OA} / R^{Y,OA} + \delta_{R}\right)}$$

$$s_{Y,G}^{K} = 1 - s_{Y,G}^{M} - s_{Y,G}^{L} - s_{Y,G}^{R}$$

TFP in downstream

- TFP in downstream unobserved because measured TFP is the whole industry i.e. both up and downstream TFP.
- Theory (Domar, 61) suggests in long run

 $\Delta \ln TFP^{measured} = \Delta \ln TFP^{Y} + s_{N}^{Y} \Delta \ln TFP^{N}$

 Thus we run regression, pooled data 1985-95 and 1995-2005

$$\Delta \ln TFP_{it}^{KLEMS} = a + b \cdot s_{N,it}^{Y,G} + e_{it}$$

- And use estimated "a" as estimate of $\Delta InTFP^{\gamma}$
- NB. Looks like a rate of return to R&D regression

Thus we compute

• For each industry J

$$\Delta \ln P_J^R = \frac{\Delta \ln P_J^{G,KLEMS} - s_{Y,G,J}^M \Delta \ln P_J^M - s_{Y,G,J}^K \Delta \ln P_J^K - s_{Y,G,J}^L \Delta \ln P_J^L + \theta_J \Delta \ln TFP_J^{G,KLEMS}}{s_{Y,G,J}^R}$$

Where θ =share of total Δ InTFP in downstream. Then we compute an overall index

$$\Delta \ln P^{R} = \sum_{j=1}^{J} \omega_{j}^{P^{R}} \left(\Delta \ln P_{J}^{R} \right)$$

Robustness checks to assumed values, τ,μ, a (hat) etc.

Alternative shares of knowledge spend industry gross output

sN-BERD: ownaccount PnN as share of GO

sN-BERD +purch: ownaccount plus allocated from PnN in R&D services,, as share of GO

sR: knowledge rentals as share of GO

Mean ΔInTFP(J) & Mean sN(J): All market sector industries

R&D relative to industry gross output

Regression:	$\Delta \ln TFP_{it}^{KLEMS}$	$= a + b \cdot s_{N,it}^{Y,G} + e_{it}$
-------------	-------------------------------	---

	Estimation by Random Effects (Robust standard errors in parentheses)				
	Dependent variable: $\Delta \ln TFP_{G,i}^{measured}$				
	(1)	(2)	(3)	(4)	(5)
ndependent variables	µ=1.00	µ=1.15	µ=1.15	µ=1.15	µ=1.15
Constant	.0091***	.0091***	.0107***	.0089***	.0080***
	(.0017)	(.0017)	(.0019)	(.0015)	(.0019)
$s^N_{G,i}$.1431***	.1244***	.1318***	.2258***	.2423***
	(.0505)	(.0439)	(.0482)	(.0482)	(.0544)
1995-2005 dummy			0040* (.0023)		.0002 (.0030)
$s_{G,i}^N * 1995 - 2005$ dummy				1852*** (.0541)	2222*** (.0771)
Memos:					、 <i>,</i>
: share of downst $\Delta \ln TFP$ in total	$\Delta \ln TFP.73$.73	.70	.71	.76
θ_1 (1985 - 1995)			.77	.63	.57
$\theta_2^{\rm L}$ (1995 - 2005)			.63	.83	.94

Note--Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

 $\hat{\theta}$

 $s_{N}^{Y,G} = P^{N}N / P^{G}G = \left(\mu \left(P^{L}L^{BERD} + P^{K}K^{BERD} + P^{M}M^{BERD} + P^{N}N^{IO}\right)\right) / P^{G}G$

Results

1985-2005	∆InP ^N ⁽ (%pa)	ΔInTFP ^N (%pa)	Contrib to GDP from R&D (%pa)	Share of total Δ InTFP due to Δ InTFP ^N
Method:				
Input cost	+4.0	0 (by assumption)	0.03	0 (by assumption)
Residual	-7.5	12.4	0.25	27%

Memo: GDP deflator = 3.5, R&D weighted output price change = 2.1

Summary

- First pass attempt to measure R&D price from price of downstream R&D users
- Theory suggests needs assumptions on
 - $-\mu$ = Innovator mark up
 - τ = relation P^NN and P^RR
 - Downstream $\Delta InTFP = \Delta InTFP^{Y}$
- Central estimates:
 - UK R&D prices fall by around 7.5%pa 1985-05.
 - Compare with GDP deflator +3.5%
 - R&D input cost deflator +4%
 - Contribution of R&D to market sector GDP growth is
 - With this fall 0.25% pa
 - With GDP deflator 0.03%pa
- Future work to further investigate sensitivity to
 - Innovator mark up
 - Industry inclusion
 - $-\Delta InTFP^{\gamma}$

spares

Weights

Memo:

We estimate the contribution of change in R&D rental price to industry GO price:

$$s_{G,i,t}^{R} \Delta \ln P_{i}^{R} = \Delta \ln P_{i,t}^{GO} - (1 - s_{G,i,t}^{R}) \Delta \ln C_{G,i,t}^{measured} + \theta \Delta \ln TFP_{G,i,t}^{measured}$$

Then we obtain overall contribution by aggregating, using Domar weights:

$$s_Y^R \Delta \ln P^R = \sum_{i=1,J} \frac{GO_i}{GVA_S} s_{G,i}^R \Delta \ln P_i^R$$

Since:

$$s_Y^R = \tau P^N N / GVA_S$$

Then:

$$\Delta \ln P^{R} = \sum_{i=1,J} \frac{GO_{i}}{\tau P^{N} N} s^{R}_{G,i} \Delta \ln P^{R}_{i} \rightarrow \Delta \ln P^{R} = \sum_{i=1,J} \frac{GO_{i}}{P^{N} N} s^{N}_{G,i} \Delta \ln P^{R}_{i}$$

So \mathcal{O} is the industry share of $\mathsf{P}^{\mathsf{N}}\mathsf{N}$

Table 3. R&D price change under alternative assumptions for R&D productivity change $(\Delta \ln TFP^N)$.							
	$\Delta \ln TFP^N =$						
					Memos:		
Period	$\begin{array}{c} 0\\ \left[\theta=1\right] \end{array}$	$\Delta \ln TFP^{Y}$ $[1/(1+s_{i,G}^{R})]$	Estimated $[\theta = \theta]$	Estimated $[\theta = \theta_1, \dot{\theta}_2]$	Column (3) with $\mu = 1.3$	R&D weighted output price change	
	(1)	(2)	(3) ^{1,2}	(4) ^{1,3}	(5)	(6)	
1. 1985-1995	6.0	4.2	-9.2	-14.7	-8.4	3.6	
2. 1995-2005	2.0	.8	-5.8	-3.0	-5.5	.7	
3. 1985-2005	4.0	2.5	-7.5	-8.8	-7.0	2.1	

Notes—Recall $\theta = \Delta \ln TFP^{Y} / \Delta \ln TFP^{measured}$ and $\Delta \ln TFP^{Y}$ is downstream productivity change. Columns (1) through (4) use $\mu = 1.15$ 1. Industries with problematic TFP estimates as well as those in the lower R&D quartile use $\Delta \ln TFP^{N} = \Delta \ln TFP^{Y}$ 2. The estimated δ is from column 2 of table 2.

3. The estimated b_1, b_2 are from column 4 of table 2.

Results

Results

Robustness: θ

Table 4. UK R&D price change for a range of values of θ , 1985-2005						
1. θ if $s_{G,i}^R > .003$.60	.70	.75	.80	.90	
2. $\Delta \ln P^N$	-13.0	-8.8	-6.7	-4.6	4	
3. $\Delta \ln N$ (or g)	18.3	14.1	12.0	9.9	5.6	
4. $\overline{\theta}$, all industries	.76	.82	.85	.88	.94	

Note—Figures are calculated assuming $\mu = 1.15$, $\tau = 1$. The variation in θ applies to productivity of major R&D performers only.

Effect of different Pr on growth accounting results with R&D capitalised

 Table 5. Growth in output per hour, TFP, and R&D stocks, UK market sector

		1985 to 2005	1985 to 1995	1995 to 2005
1.	Output per hour, R&D capitalized	2.9	3.0	2.8
1a	Without R&D capitalization	2.7	2.7	2.6
1b	Difference due to capitalization ¹	.22	.30	.14
1c	Contrib. of R&D deflator	.16	.21	.12
2.	TFP, R&D capitalized	2.2	2.2	2.1
2a	Without R&D capitalization	2.2	2.3	2.1
2b	Difference due to capitalization ²	05	06	05
3.	Real stocks of R&D assets	12.7	14.2	11.1
3a	Contrib. of R&D capital deepening ³	.25	.33	.17

Note—Growth rates are calculated using log differences. Italicized entries are percentage points.

1. Line 1 less line 1a.

2. Line 2 less line 2a.

3. Contribution to the growth in output per hour, line 1.

Downstream knowledge rental payments, P^RR?

- Assume value of new knowledge created in the upstream sector $P^{N}N \equiv \mu \left[\left(P^{L}L^{BERD} + P^{K}K^{BERD} + P^{M}M^{BERD} \right) + P^{N}N^{IO} \right]$
- To convert P^NN to P^RR, use rental and PIM

$$P_{t}^{R}R^{Y,OA} = P_{t}^{N}N^{BERD}(\rho_{t} + \delta_{R})\frac{R^{Y,OA}}{N^{BERD}} \qquad R_{t} = N_{t} + (1 - \delta_{R})R_{t-1}$$

To give

$$P^{R}R^{Y,OA} = \frac{P^{N}N^{BERD}(\rho + \delta_{R})(1 + \Delta R^{Y,OA}/R^{Y,OA})}{\left(\Delta R^{Y,OA}/R^{Y,OA} + \delta_{R}\right)}$$
$$= \tau \left(P^{N}N^{BERD}\right), \quad where \ \tau = \frac{(\rho + \delta_{R})(1 + \Delta R^{Y,OA}/R^{Y,OA})}{\left(\Delta R^{Y,OA}/R^{Y,OA} + \delta_{R}\right)}$$

Mean MInTFP(J) & Mean sN(J): Excl. outliers, nonperformers, and lowest R&D quartile, 2 productivity episodes

Excl. outliers, nonperformers, and lowest R&D quartile

1985 to 1995

1995 to 2005