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Abstract

Commodities have been increasingly incorporated into traditional Stock-Bond-Cash portfo-

lios by investors. However, their ability to generate sizable economic gains has been questioned

recently, especially in an out-of-sample (OOS) context. In this study, we conduct a comprehen-

sive OOS assessment on the economic value of commodities in multi-asset investment strategies

for both mean-variance (MV) and non-mean-variance investors who exploit the predictability

of time-varying asset return moments. We find that predictability makes the addition of com-

modities profitable even when short-selling and high leverage are not permitted. For instance,

a MV investor with moderate risk aversion would be willing to pay upto 101 bps per year after

transaction cost for adding commodities into her stock, bond and cash portfolio.
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1 Introduction

Commodities, as an alternative class of investable assets, have attracted substantial interest from

both institutional and individual investors over the course of the past decade. According to a

recent report by McKinsey, by the end of 2011, the amount of all forms of alternatives in global

assets under management (AUM) has exceeded $6.5 trillion representing 14 percent weight in the

global portfolio, and is expected to reach 17 percent by the end of 2013. Among all alternative

strategies, commodities have grown rapidly at an annual rate of 21 percent during 2005-2011,

and stand at roughly $600 billion or approximately 6% in global AUM at the year-end of 2011.1

Evidently, commodities play an increasingly important role in global capital markets. In the asset

management industry the dramatic boom of commodity investing appears to be linked to at least

three perceived qualities of commodities: risk diversification, high historical returns and protection

against inflation.2 Yet, the increasing popularity of commodities recorded in investment practice

and the alleged merits pursued by investors do not settle the critical question of how investors should

optimally incorporate commodities in their multi-asset portfolios, or even if they should at all. This

issue is also reflected in McKinsey’ research report: the surveyed traditional asset managers fully

agree with the potential of alternatives; on the other hand, they perceive to be constrained by

limited knowledge in risk management and product expertise for moving into alternatives.

Academic researchers have conducted numerous analyses of the economic value adding of com-

modity investment, but the results appear to be inconclusive. On one side, some studies show that

investing in commodities indeed improves the risk-return profiles of mean-variance (MV) investors’

multi-asset portfolios based on in-sample (IS) assessment. On the other hand, the ability of com-

modities to generate significant out-of-sample (OOS) economic gains has been questioned in recent

studies. As a prominent example, Daskalaki and Skiadopoulos (2011) present the most recent OOS

1McKinsey’s Global Alternative Investment Report is available at http://www.mckinsey.com/clientservice/

financial_services/knowledge_highlights/recent_reports/mainstreaming%20of%20alternatives.aspx?sc_

lang=en.
2According to a survey by Barclays Capital who interviewed over 100 institutional investors and advisors, al-

most half of respondents choose portfolio diversification as their main reason investing in commodities, a third
choose absolute returns, and one tenth inflation protection. The report is available at http://www.barcap.com/

about-barclays-capital/press-office/research-reports.html.
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evidence that investing in commodities adds no value for either mean-variance (MV) or non mean-

variance (non-MV) investors. In the present paper we argue that most, if not all, existing studies

that examine the OOS economic value of commodities in multi-asset portfolios are based on static

and/or backward-looking (BWD) estimates of the return moments that become input to the asset

allocation problem. For instance, Daskalaki and Skiadopoulos (2011) rely on rolling sample mo-

ments at any given date t as estimates for the moments at time t+ 1 that, then, determine optimal

portfolio weights. But there is by now compelling empirical evidence that asset return moments

are time-varying and, to some extent, predictable by variables other than themselves. Indeed,

several previous studies show that exploiting the predictability of returns by economic variables

or of their volatilities and correlations leads to tangible economic gains for portfolios that include

either equities and cash or equities, bonds and cash. A few recent studies point to the importance

of including the dynamics of return skewness and/or kurtosis in the asset allocation exercise with

equities and/or bonds and cash. No study that we know of, however, investigates the predictable

dynamics of return moments in the context of asset allocation strategies that include commodi-

ties in addition to equities and bonds. Without careful examination of the return dynamics in a

forward-looking (FWD) framework while implementing portfolio strategies, we believe the above

conclusion about the lack of value added by commodities to be somewhat in hasty.

In this paper, we provide a comprehensive analysis of the OOS performance of investment

strategies incorporating commodities into traditional asset portfolios for both MV and non-MV

investors. A major innovation differentiating our study from the existing literature is that we

recursively construct one-period-ahead optimal portfolios by exploiting the predictability of all

the first four moments of asset returns. We find that, by exploiting predictability, the inclusion

of commodities into traditional asset portfolios does generate significant out-of-sample economic

gains. Furthermore, for both traditional and commodity-augmented portfolios, FWD strategies

outperform their BWD peers.
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2 Literature

The potential benefits of investing in commodities have been suggested in several academic stud-

ies. In a seminal paper, Gorton and Rouwenhorst (2006) construct an equally weighted long-only

commodity futures index that generates an average annualized geometric return of 9.98% with

monthly rebalancing over the 1959-2004 period. They also document the pattern that the monthly

(quarterly and annual) returns of the index are insignificantly (negatively) correlated with stocks

and bonds but positively correlated with inflation. Consequently, the authors suggest that com-

modity futures could be an ideal diversifier to traditional investment portfolios. However, Gorton

and Rouwenhorst do not attempt to directly assess the empirical benefits of investing in commodi-

ties, so it is not clear whether and how the potential benefits could be realized practically. Erb

and Harvey (2006) question the ”equity-like” return of the Gorton-Rouwenhorst index and argue

that such high return is achieved through frequent portfolio rebalancing rather than high returns

of individual futures. In a simple asset allocation exercise, they demonstrate that incorporating

commodity futures into an equity-bond portfolio improves the risk-return profile significantly if the

excess return of the commodity portfolio exceeds 3%.3 Unfortunately, Erb and Harvey do not offer

an OOS evaluation based on actual data of asset returns.

Some researchers more directly examine the economic value of commodities in multi-asset allo-

cation exercises, but no consensus on whether investing in commodities adds value to traditional

equity-bond investors has been reached thus far. On one hand, a number of studies provide evi-

dence that commodities can be effective alternatives to achieve portfolio diversification. For exam-

ple, Bodie and Rosansky (1980) find that simply switching from a 100% stock portfolio to 60-40%

stocks and commodities makes an investor better off by trimming off one third of the portfolio risk

without sacrificing any return performance during the period 1950 to 1976. Similarly, Fortenbery

and Hauser (1990) find that adding individual agricultural commodity futures into a well diversi-

fied stock portfolio does not enhance the return performance but does reduce risk. After adding

3Erb and Harvey also show that an 18-60-22% commodity-equity-bond portfolio yields much higher return than
a traditional 60-40% equity-bond portfolio given the same level of volatility.
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commodities into an investment portfolio that consists of stocks, bonds, Treasury bills, and real es-

tate, Jensen, Johnson, and Mercer (2000) report that the Markowitz optimization gives substantial

weights towards commodities so that the portfolio’s return is enhanced during restrictive monetary

policy periods, but little or no weights during expansive monetary periods. Anson (1999) investi-

gates the diversification contribution of commodities with respect to investors’ risk tolerance, and

finds that more risk averse investors gain higher utility from investing in commodity index funds

than less risk averse investors during 1974-1997. More recently, some researchers provide more sup-

portive evidence at the levels of individual commodities and sub-sectors. For instance, Geman and

Kharoubi (2008) document that WTI crude oil futures provide significant diversification opportu-

nities to the S&P500 index from 1990 to 2006. You and Daigler (2012) confirm the diversification

benefits of 39 commodity futures to traditional equity-bond portfolios in the period 1994-2010.

Belousova and Dorfleitner (2012) document the heterogeneous diversification effects across five

commodity sectors that energy and precious metals yield the highest value in both return enhance-

ment and risk reduction, and agricultural, livestock and industrial metals only contribute to the

risk reduction dimension. It is important to notice that the commodity-augmented portfolios in

most of these studies are constructed using historical mean returns and sample variance/covariance

(covariance) structures and then evaluated within a MV or IS framework.4

On the other hand, other recent studies have challenged the alleged view by showing that

including commodities in investors’ portfolios adds little or no value, particularly, in an OOS

assessment. The most recent and striking evidence is documented in Daskalaki and Skiadopoulos

(2011), in which the authors conduct a comprehensive examination on the diversification value of

two most popular commodity indexes (S&P GSCI and DJ-UBSCI) and five individual commodity

futures under four different specifications, namely the four cross-combinations of MV or non-MV

investors and in- or OOS settings. They find that, after accounting for investors’ preferences over

higher-order moments, commodities only contribute to non-MV investors in the IS setting, but are

4You and Daigler (2012) construct ex ante portfolios without infrequent rebalancing and evaluate their performance
based on efficient frontiers and the Sharpe ratios within a MV framework; Belousova and Dorfleitner (2012) consider
non-normal returns, but the performance evaluation is based on IS statistical spanning tests.
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not beneficial under any of the other specifications. Even though a large body of literature has

suggested or directly confirmed the benefits of commodities in an IS setting, the reported results in

Daskalaki and Skiadopoulos (2011) inevitably raise some concerns over the validity of such benefits

in an OOS context. Moreover, some studies employ regression-based spanning tests to examine

whether investing in commodities indexes or individual futures improves the MV efficient frontier

of benchmark portfolios within a MV and IS framework, and fail to find any value.5 [See Cao,

Jayasuriya, and Shambora (2010), Galvani and Plourde (2010) and Nijman and Swinkels (2008).]

Another concern on the diversification value of commodities comes from the recent debate on the

pattern of increasing correlation between commodity and stock returns since the crash of financial

markets in 2007.6 Investigating the causes of such phenomena goes beyond the scope of this paper.

Nevertheless, the observed rising commodity-equity correlation is certainly of investors’ concern, as

it could hurt the risk diversification value of commodities, and thus, in turn, would have influence

on their optimal portfolio selection. Therefore, it is interesting to re-examine the diversification

role using updated data during the post-crisis period.

To summarize, despite the fact that investing in commodities has become popular in recent

years and that a large number of academic studies have looked into its potential benefits in im-

proving portfolio performances, there have been thus far mixed answers to the question of whether

commodities add value in multi-asset allocation exercises, particularly and more importantly, OOS.

To explore the economic value of commodities in portfolio allocation, this paper sets out to better

account for the dynamic nature of asset return moments than previously done in the literature.

3 Existing Approaches and Extensions

In this study, we extend the existing literature on the role of commodities in multi-asset alloca-

tion along several dimensions. Firstly, the predictability of commodity returns has been largely

5It is worth noting that these studies rely on the outcomes of statistical spanning tests. However, there has been a
debate on ”statistical” vs. ”economical” significance for spanning tests. See Glabadanidis (2009) and Kan and Zhou
(2012) for detailed discussion.

6See Domanski and Heath (2007), Hamilton (2008), Smith (2009), Tang and Xiong (2010), Chong and Miffre
(2010), Büyükşahin and Robe (2010) and Kilian and Murphy (2010) for the debate.
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neglected by researchers. Instead, all prior studies rely on sample means of historical returns as the

estimates for future expected returns.7 To the best of our knowledge, this is the first study that

explicitly takes into account commodity return predictability in forming optimal portfolios that

incorporate multiple asset classes.8 Secondly, previous studies exclusively rely on static and/or

BWD looking covariance estimators to derive optimal portfolio rules. Instead, we explicitly con-

sider the dynamics of covariance structures of commodities and other asset classes in the portfolio

optimization problem. The combined analysis of predictable first and second moments for port-

folio allocation is typically absent from previous studies, whether or not considering commodities.

Thirdly, the asset allocation exercises involving commodities have been almost always conducted

within the classic Markowitz MV framework, which only relies on the first and second moments

of commodity returns. As we will detail below, commodity returns exhibit negative skewness and

substantial leptokurtosis, making problematic the reliance on first and second moments only when

implementing and evaluation portfolio strategies. In addition to the MV case, we also conduct

the analysis in a non-MV context by incorporating higher-order moments of asset returns whose

significance and time variation are well documented in the literature.9 Lastly, the results of existing

studies that support the inclusion of commodities into a stock-bond portfolios are exclusively based

on the IS assessment. However, there have been legitimate concerns about the OOS validity, which

motivates our analysis in an OOS context. 10 In this we exclusively rely on an OOS performance

evaluation.

7Bodie and Rosansky (1980), Fortenbery and Hauser (1990), Jensen, Johnson, and Mercer (2000), Anson (1999)
and Belousova and Dorfleitner (2012) all employ constant historical estimators; Daskalaki and Skiadopoulos (2011)
use rolling-sample based estimator.

8Erb and Harvey (2006) simply assume a sample set of forward-looking commodity futures index returns for
demonstrating purpose only.

9The studies that document the impact of higher moments of asset returns in asset allocation context include
Harvey and Siddique (1999), Ang and Bekaert (2002), Timmermann (2006) and Jondeau and Rockinger (2006,
2012).

10Daskalaki and Skiadopoulos (2011) perform both in- and out-of-sample tests, and, as noted above, they find
commodities add no value to investors OOS. See also Welch and Goyal (2008) for related concerns on IS evaluations
of return predictability.
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3.1 Predictable commodity expected returns

In principle, expected returns, as one of the crucial inputs to the portfolio optimization problem,

should be forward-looking, and thus, forecasted. In practice, as demonstrated in Timmermann and

Blake (2005), sophisticate investors indeed forecast time-varying future investment opportunities

and then invest accordingly. All previous studies investigating the value of commodities in asset

allocation tend to use sample means as the ”best” estimates for future expected returns without

taking account their time-varying characteristics. The theoretical work by Merton (1971, 1973)

implies that return predictability could have significant impact on investors’ optimal portfolio

choices. Motivated by the theoretical implication and the overwhelming empirical findings on stock

return predictability, a number of studies show that such predictability, even statistically weak,

could lead to significant economic gains, if exploited by investors who allocate wealth in equity

markets. [See Solnik (1993), Pesaran and Timmermann (1995) and Cenesizoglu and Timmermann

(2012) for example.] Naturally, two questions arise: are commodity returns predictable? If so,

could such predictability pay off economically? The answer to the first question is yes, which we

will detail soon. Unfortunately, there has been no study dedicated to the second question, which

seems more economically meaningful. Thus, the first goal of this paper is to fill this gap by exploring

the economic value of commodity return predictability in multi-asset allocation.

Systematically estimating forward-looking expected returns of commodities could be a chal-

lenging task, due to the fact that commodities exhibit great heterogeneity in both return and risk

characteristics. Fortunately, recent studies have documented the IS and OOS return predictabil-

ity by a collection of variables at both individual commodity and broad index levels. Generally,

these variables could be categorized into two sets: macro-economic and commodity-specific. The

macro-economic set includes the short interest rate, the long term rate of return on bonds, corpo-

rate bond yield spreads over government issued bonds, the inflation rate, the growth in Industry

Production, the growth in Money Supply, the Baltic Dry Index and the aggregate open interest in

commodity futures markets. [Bessembinder and Chan (1992), Bakshi, Panayotov, and Skoulakis
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(2011), Gargano and Timmermann (2012) and Hong and Yogo (2012).] The commodity-specific set

includes the open interest imbalance between hedgers and speculators (also known as the ”hedging

pressure”11) and the basis12.

One possible reason that return predictability has been largely neglected by researchers in the

asset allocation literature that involves commodities could be the lack of reliable forecasting models

or predictors for future commodity returns. Nevertheless, recent innovation in the literature has

updated our knowledge and identified a collection of variables that appear to predict commod-

ity returns. Hence, it seems reasonable and important to investigate the economic value of the

predictability in portfolio selection with commodities.

3.2 Predictable volatility and correlations

It is now widely agreed that covariance of financial asset returns vary substantially across as-

sets, asset classes, countries, time periods, market conditions and business cycles.13 Particularly,

Chong and Miffre (2010) and Büyükşahin, Haigh, and Robe (2010) document the large variation in

commodity-equity correlations at both index and individual futures levels over time, which, in turn,

implies time-varying diversification benefits of commodities for traditional equity-bond investors.

Some researchers have examined the impact of covariance dynamics on portfolio strategies with-

out considering commodities, and find that it yields substantial economic gains (loss) for investors

who account for (ignore) the dynamics of covariance structures. For example, Fleming, Kirby, and

Ostdiek (2001, 2003) demonstrate that volatility predictability in stock markets would be worth

50-200 bps per year for an investor who allocates her wealth in the S&P500 index, Treasury bonds

and gold futures. Della Corte, Sarno, and Tsiakas (2012) find substantial economic value in timing

correlations in addition to the gains from volatility timing in FX markets. Engle and Colacito

11See Hirshleifer (1989), Bessembinder and Chan (1992) and De Roon, Nijman, and Veld (2000).
12The basis is defined as the difference between the current spot price and the contemporaneous futures price,

which is closely related to the convenience yield that serves as an important determinant pricing futures contracts in
the Theory of Storage. See Fama and French (1987) and Gorton, Hayashi, and Rouwenhorst (2012).

13See Erb, Harvey, and Viskanta (1994), Longin and Solnik (1995), Ball and Torous (2000), Ang and Bekaert
(2002), Moskowitz (2003), Goetzmann, Li, and Rouwenhorst (2005), and Cappiello, Engle, and Sheppard (2006)
for international and U.S. equities and bonds; Büyükşahin, Haigh, and Robe (2010), Chong and Miffre (2010) for
commodities and stocks; Huang and Zhong (2010) for commodities, real estate and TIPS.
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(2006) theoretically and empirically show that, keeping other conditions constant, the economic

loss of stocks-bonds portfolio performance could be as high as 40% of return if a static correlation

specification is assumed but the true structure is dynamic.

Given the empirical evidence on time-varying covariance highlighted in the data and the eco-

nomic significance of dynamic covariance modeling, it is surprising that all previous studies evalu-

ating the value of commodities in asset allocation fail to take into account the dynamic nature in

the OOS portfolio analyses. Hence, another question this paper aims to address is whether captur-

ing such covariance dynamics between commodities and other assets adds OOS economic value for

investors.

3.3 Predictable Skewness and Kurtosis

One of the inadequacies of the classic Markowitz portfolio theory and its empirical implementations

is its inability to handle higher-order moments of the return distribution. However, it seems reason-

able to assume that risk averse investors favor positive skewness and low kurtosis in asset returns.14

Moreover, there exists overwhelming empirical evidence suggesting that financial asset returns ex-

hibit excess skewness and kurtosis rather than normality.15 Gorton and Rouwenhorst (2006), Erb

and Harvey (2006) and Gorton, Hayashi, and Rouwenhorst (2012) all report that monthly return

distributions of commodity futures indexes and individual futures have positive skewness and ex-

cess kurtosis during the periods of 1959-2004, 1982-2004 and 1971-2010, respectively. At weekly

frequency, the results are mixed. You and Daigler (2010) report 55% of 20 commodity futures have

positive skewness during the 1992-2006 period. At daily frequency, Eastman and Lucey (2008)

show that the returns of 14 futures are all negatively skewed except the 10-year notes. In summary,

the skewness and kurtosis of commodity returns are well pronounced in the data although sensitive

to data frequencies.

The inconsistency between the presence of skewness and kurtosis in the data and the normality

14Scott and Horvath (1980) establish the fact that investors prefer odd moments and are averse to the even ones.
Harvey and Siddique (2000) and Dittmar (2002) offer the empirical evidence.

15E.g., see Ang and Bekaert (2002) for the evidence in equity markets.
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assumption in the classic portfolio theory has drawn attention by researchers in asset pricing and

asset allocation. Several studies find that risk averse investors do adjust optimal portfolio weights

accordingly to time-varying skewness and kurtosis in stock returns, and that portfolio strategies

accounting for the dynamics of higher-order moments leads to economically significant gains.16

However, the literature has been extremely skewed towards the impact of higher moments in optimal

allocations within equity markets. There has been very limited exploration on whether these

findings in equity markets are preserved in other asset classes, in particular, commodities.17 Given

the presence of excess skewness and kurtosis in commodity return data, another goal of this study

is to analyze the economic value of predicting higher-order moments and co-moments of commodity

returns in an OOS asset allocation context.

3.4 Summary and potential challenges

In the present study, we assess the OOS performance of investment strategies incorporating com-

modities into traditional asset portfolios by more carefully modeling forward-looking expected com-

modity returns, dynamics of volatility and correlation structures and higher-order moments. Our

analysis builds on the recursive construction of optimal OOS portfolios consisting of commodities,

stocks, bond and cash.

This is not a challenge-free exercise. One of the main challenges lies in the well-known estimation

risk, which has been discussed in a number of asset allocation studies.18 Admittedly, any sophisti-

cated asset allocation models that either account for time-varying and state-dependent properties

or introduce higher moments raise the concerns of estimation error. Specifically, the true model

parameters are unknown and thus need to be estimated from the data. Therefore, the estimated

optimal portfolio rule is subject to parameter uncertainty that makes the estimated rule signifi-

cantly different from the true optimal rule. Increasing the richness and, thus, the dimensionality

16See Bekaert, Erb, Harvey, and Viskanta (1998), Patton (2004), Jondeau and Rockinger (2006), Guidolin and
Timmermann (2008) and Harvey, Liechty, Liechty, and Müller (2010), among others.

17Daskalaki and Skiadopoulos (2011) and You and Daigler (2010) are exceptions.
18For example, see Kandel and Stambaugh (1996) and Jagannathan and Ma (2003).
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of the model exacerbates the problem.19

4 The asset allocation strategies

In this section, we discuss the asset allocation strategies under different specifications and the as-

sessment of their OOS performance. In general, we consider the case of a risk averse investor with

preferences characterized by a continuous, increasing and concave utility function facing an asset

allocation problem with N risky assets and a risk-free asset. The investor recursively chooses port-

folio weight vectors xt ∈ RN+1 to maximize her one-period-ahead expected utility Et[U(Wt+1)].
20

Let xt = [θt, ωt]
′ denote the portfolio weight vector at time t. In particular, θt is a scalar denoting

the weight on the risk-free asset, ωt ∈ RN is a vector denoting the weights on N risky assets, and

ith element of ωi,t is the fraction of wealth to the ith risky asset. The investor’s initial wealth is

normalized to one. At each time t, the investor’s portfolio optimization problem with respect to xt

is given by:

max
xt

Et[U(Wt+1)] (1)

s.t. i′xt = 1

where i is a N × 1 vector of 1.

For comparison purposes, we evaluate the performance of the following investment strategies.

1. Traditional asset / backward-looking strategy (S-B/BWD): the investor employs backward-

looking sample moments of asset returns as the inputs to the optimization problem defined

in Eq.(1) to allocate her wealth in Equity, Bond and Cash only.

19This is reminiscent of the issue raised by the provocative work by DeMiguel, Garlappi, and Uppal (2009). The
authors question the value of 14 static MV portfolio optimization models and show that none of the 14 models can
beat the naive 1/N rule (i.e. an asset allocation strategy that invests 1/N of wealth on each of the N available assets
at each rebalancing date.) in terms of OOS Sharpe ratios. In the present study, the issue appears to be of a less
concern as we are dealing with a substantially lower dimensional problem.

20As most academic studies in asset allocation only focus on solving recursive myopic portfolio optimization prob-
lems [See, for example, DeMiguel, Garlappi, and Uppal (2009), Daskalaki and Skiadopoulos (2011) and Cenesizoglu
and Timmermann (2012).], and given also that industry practice is mostly about one-period problems as illustrated
by Brandt (2009), we leave the dynamic portfolio choice analysis for future study.
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2. Traditional asset / forward-looking strategy (S-B/FWD): the investor employs forward-

looking moments as the inputs to the optimization problem defined in Eq.(1) to allocate

her wealth in Equity, Bond and Cash only.

3. Commodity-augmented / backward-looking strategy (S-B-C/BWD): the investor employs

backward-looking sample moments of asset returns as the inputs to the optimization problem

defined in Eq.(1) to allocate her wealth in Equity, Bond, Commodity and Cash.

4. Commodity-augmented / forward-looking strategy (S-B-C/FWD): the investor employs forward-

looking moments as the inputs to the optimization problem defined in Eq.(1) to allocate her

wealth in Equity, Bond, Commodity and Cash.

For all four strategies, we evaluate and compare their OOS performance based on economic criteria

for both MV and non-MV cases.

4.1 The MV case

We first consider the case for a MV investor whose preferences are characterized by a quadratic

utility function. So her expected utility maximization problem is given by:

max
ωt

Et[rp,t+1]−
γ

2
vart[rp,t+1] (2)

where γ measures the investor’s tolerance for risk, rp,t+1 = ω′tµt+1 is the portfolio return at the

time t + 1, and vart[rp,t+1] = ω′tΣt+1ωt is the t + 1 portfolio return variance. The solution to the

optimization problem defined in Eq.(2) is given by:

ω?t =
1

γ
Σ−1t+1µt+1 (3)

where µt+1 ≡ Et[rt+1] ∈ RN the vector of expected excess returns, and Σt+1 ≡ Et[(rt+1 −

µt+1)(rt+1 − µt+1)
′
] ∈ RN×N is the covariance matrix of N risky assets. The optimal weight
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for the risk-free asset is given by:

θ∗t = 1− i′ω∗t (4)

Thus, to obtain the optimal weights x∗t = [θ∗t , ω
?
t ]
′, one needs to input the estimates for µt+1 and

Σt+1. In this study, we consider two sets of estimators: (i) the BWD estimators µ̄t+1 and Σ̄t+1

which denote the sample mean and sample covariance matrix up to time t; (ii) the FWD estimators

µ̂t+1|t and Σ̂t+1|t which denote the conditional OOS forecasts for the expected excess returns and

covariance matrix using conditional information up to time t. We detail the OOS forecasting in

the following sections.

4.1.1 Forecasting excess returns

In this section, we discuss the predictive variables and forecasting methods for each asset.

Commodities. A number of related studies motivate the set of predictive variables used in

our study. [See Bessembinder and Chan (1992); Bakshi, Panayotov, and Skoulakis (2011); Gargano

and Timmermann (2012); Hong and Yogo (2012).] Most of the predictors are macro economic

variables that have been identified as reliable signal of higher economic activity and, consequently,

future movements in asset prices. [See, for example, Hong and Yogo (2012).] Specifically, the short

rate (TB3) is measured by the 90-day Treasury bill yield; the long-term rate of returns (LTR) is

calculated as the equally-weighted average of 10-, 20- and 30-year U.S. Treasury bond yields; the

default yield spread (DFS) is computed as the difference between Baa- and Aaa-rated corporate

bond yields; the inflation (INFL) is the year-on-year (log) growth rate of Consumer Price Index;

the monthly (quarterly) growth rate of Industrial Production Index (∆IP ) is calculated as the log

difference of month-end (quarter-end) Industrial Production index and the growth rate of Baltic

Dry Index (BDI) is the log changes in the BDI over the preceding three months.21

Equities. There has been a huge literature studying the stock return predictability. A long

list of predictors have been previously utilized in the literature. In this study, we consider a set

21Baltic Dry Index is an assessment of the price of moving the major raw materials by sea. See, for example,
Bakshi, Panayotov, and Skoulakis (2011) for a comprehensive analysis on the BDI as a reliable predictor for asset
returns and global economic activities.
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of predictors that have been extensively studied and, more importantly, confirmed in recent OOS

studies.[See, among others, Welch and Goyal (2008) and Henkel, Martin, and Nardari (2011).] In

addition to the short rate (TB3), long-term rate of return (LTR) and default spread (DFS) that

are already defined in previous section, 3 new variables are included: the dividend price ratio (DP )

defined as the difference between the log of the 12-month moving sum of dividends and the log

of the S&P 500 index, the net payout yield (NPY ) calculated as the difference of the log of the

sum of dividends and repurchases less issuances and the log of the S&P500 index and the term

spread measured (LTR) as the difference between the 10-year Treasury bond yield and the 90-day

Treasury-bill. Again, we use the combination forecast method defined in Eq.(6) and Eq.(7) to

forecast the next period OOS excess returns of S&P500 index r̂xcombstk,t+1.

Bonds. To forecast excess returns for the US Treasury bond index, we use two sets of predictive

variables. The first set consists of forward rates calculated from 1-5 year US Treasury bond prices.

[See Cochrane and Piazzesi (2005)] The second set includes 3 individual variables identified in

Ilmanen (1995): the inverse relative wealth (INV RELW ) as a proxy for time-varying risk aversion

and two overall proxies for expected bond risk premium, namely the term spread (TERM) which

is defined in the previous subsection and the real yield (REALY LD) measured as the difference

between the long-term bond yield and the year-on-year inflation rate.

We follow, among others, Rapach, Strauss, and Zhou (2010) and employ the forecast combi-

nation method to produce one-period-ahead OOS forecasts for excess returns of each asset.22 The

general rationale for using a forecast combination is that, while individual forecasts could suffer

from model mis-specification and instabilities, combining the individual forecasts could exploit the

valuable information carried by each predictor and, at the same time, achieve benefits from fore-

cast diversification. From the diversification perspective, we pool the individual forecasts and thus

reduce the “risk” - forecasting errors.

22The method is originally pointed out by Bates and Granger (1969). Timmermann (2006) offers a comprehensive
theoretical and empirical study on forecast combinations.
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The forecasting model Eq.(5) - Eq.(7):

rxi,t = αi + βizi,t−1 + εi,t where i = 1 · · ·K (5)

r̂xi,t+1|t = α̂i,t + β̂i,tzi,t (6)

r̂xcombt+1|t =
1

K

K∑
i=1

r̂xi,t+1|t (7)

where zi,t−1 is the ith individual predictor at time t − 1, and K is the total number of predictive

variables.

We first run the univariate predictive regression defined in Eq.(5) to produce the IS estimates

for parameters α̂i,t and β̂i,t upto time t. Next, we follow Eq.(6) to produce the one-period-ahead

forecasts r̂xi,t+1|t using α̂i,t, β̂i,t and zi,t. At last, we combine individual forecasts r̂xi,t+1|t across the

K individual forecasts with equal weights to obtain the next period OOS forecasts r̂xcombt+1|t. We do

not perform any statistic tests to determine combining weights, but simply average them to avoid

estimating the weights which induces estimation error and may deteriorate the OOS performance.23

The IS predictive regression is based on an expanding window and only uses information upto time

t.

4.1.2 Forecasting covariance matrix

We next turn to estimate another key input in Eq.(3), namely the multi-period ahead conditional

covariance matrix Σt+1. We employ the Dynamic Conditional Correlation (DCC) model proposed

by Engle (2002) to obtain the OOS forecast.24 Essentially, the one-period ahead covariance matrix

estimator can be decomposed as:

Σ̂t+1|t = D̂t+1|tP̂t+1|tD̂t+1|t (8)

23Timmermann (2006) and Rapach, Strauss, and Zhou (2010) demonstrate the benefits of using equally weighted
forecast combinations.

24The DCC model and its variations have been used by several studies in asset allocation context. For example,
Billio, Caporin, and Gobbo (2006), Huang and Zhong (2010), Case, Yang, and Yildirim (2012) and Della Corte,
Sarno, and Tsiakas (2012).
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where D̂t+1|t is an N × N diagonal matrix with conditional standard deviation σ̂i,t+1|t on the ith

diagonal, and P̂t+1|t = {ρ̂ij,t+1|t} is an N × N matrix with ones on the diagonal and conditional

correlations off the diagonal. Given the decomposition, we can employ a two-stage estimation

procedure to obtain Σ̂t+1|t. In the first stage, we forecast each diagonal element (σ̂i,t+1|t) of D̂t+1|t

with a univariate GARCH(1,1) model. In the second stage, we first de-mean all return series

and obtain their residuals. Then, we standardize the residual series by their conditional standard

deviations and fit the standardized residuals into a multivariate GARCH(1,1) model to obtain the

one-period-ahead conditional correlation matrix P̂t+1|t. All estimation are based on up to-time-t

return data only (i.e. no additional predictive variables). The two-stage procedure is detailed in

Appendix A.

4.1.3 Statistical Evaluation of Predictability

We statistically assess the forecastability of asset returns, volatility and correlations using the

OOS R2 statistics introduced in Campbell and Thompson (2008) and the Mincer-Zarnowitz (M-Z)

regression proposed by Mincer and Zarnowitz (1969).

Excess Returns. The statistic measure for asset return predictability is computed as following:

OOS R2
rx = 1−

∑T
t=1(rxt − r̂xt|t−1)2∑T
t=1(rxt − r̄xt−1)2

(9)

where rxt is the ex post realized excess return, r̂xt|t−1 is the FWD estimator, and r̄xt−1 is the

BWD estimator. In our case, the FWD estimator for each asset is the combination forecasts r̂xcombt|t−1

defined in Eq.(7) using an expanding window estimation. For BWD estimators, we consider 60-,

120-month moving averages and historical means of monthly excess returns as benchmarks for the

evaluation.

Volatility. There seems no universal agreement on the best measure evaluating the OOS

forecasting performance of volatility. Therefore, in light of Andersen and Bollerslev (1998), we rely

on the M-Z methodology to evaluate the alternative volatility forecasts by regressing the ex post
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realized volatility computed from daily data on a constant and the various forecasts as follows:

rvolt = β0 + β1vol
∗
t|t−1 + εt (10)

where rvolt is the ex post realized volatility calculated as the sum of squared daily returns over

the period t, vol∗t|t−1 is the evaluated volatility estimator using information upto time t − 1. In

particular, vol∗t|t−1 ≡ ¯rvolt−1 is the BWD sample volatility, i.e. the moving standard deviation

of 60- or 120-month monthly returns, and vol∗t|t−1 ≡ ˆrvolt|t−1 is the FWD volatility forecast, i.e.

the estimator that exploits the time-varying properties. Following the standard MZ methodology,

the regression defined in Eq.(10) with the β0 closest to zero, the β1 closest to one and the highest

regression R2 is viewed as the best forecasts.

Correlations. The OOS forecasting performance of correlations is evaluated in the same way

as volatility.

ρij,t = β0 + β1ρ
∗
ij,t|t−1 + εt (11)

where ρt is the ex post realized correlation between asset i and j over the period t, ρ∗ij,t|t−1 is the

evaluated correlation estimator using information upto time t − 1. In particular, ρ∗ij,t|t−1 ≡ ρ̄ij,t−1

is the BWD sample correlation (i.e. the moving correlation of 60- or 120-month monthly returns),

and ρ∗ij,t|t−1 ≡ ρ̂ij,t|t−1 is the FWD correlation forecast using the DCC model.

4.1.4 Economic Evaluation of MV Strategy Performance

With the BWD (µ̄t and Σ̄t) and the FWD estimators (µ̂t+1|t and Σ̂t+1|t) of expected returns,

volatility and correlation matrix, we can then determine the optimal weight vector (ωt) as expressed

in Eq.(3). We use these weights and the ex post realized asset returns (rt+1) to compute the

portfolio return in time period t + 1. Repeating these steps, we obtain the OOS portfolio return

series {rp,t}t=τ+1,··· ,T for economic assessment.

We compute a number of portfolio performance measures that have been widely used in the

asset allocation literature to assess the economic performance of alternative strategies: the Sharpe
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Ratio (SR), the Sortino’s Upside Potential Ratio (UP), the Certainty Equivalent Return (CEQ)

and the Portfolio Turnover (TO). We detail these metrics in the following.

We compute the OOS Sharpe Ratio25 as:

SRτ+1:T =
µ̄τ+1:T

σ̄τ+1:T
(12)

where µ̄τ+1:T and σ̄τ+1:T are respectively the sample mean and standard deviation of realized

portfolio excess returns over the OOS period [τ+1:T]. To test whether the SRs of two strategies

are statistically distinguishable, we also compute the p-value of the difference, using the approach

suggested by Jobson and Korkie (1981) after making the correction pointed out in Memmel (2003).

We also calculate an additional ratio measure, namely the Sortino’s Upside Potential Ratio (UP)

originally proposed by Sortino, Meer, and Plantinga (1999). In contrast to SR, UP is calculated as

the ratio of the sample mean of positive portfolio returns divided by the “bad” standard deviation

by using negative returns only:26

UPτ+1:T =
1

T−τ
∑T

t=τ+1Max(r̃p,t, 0)

[ 1
T−τ

∑T
t=τ+1Min2(r̃p,t, 0)]

1
2

(13)

Moreover, we compute the Certainty Equivalent Return (CEQ), which can be interpreted as

the risk-free rate that an investor is willing to accept rather than adopting a particular portfolio

strategy.27 In particular, the CEQ is computed as:

CEQτ+1:T = µ̄τ+1:T −
γ

2
σ̄2τ+1:T (14)

25SR measures a trading strategy’s risk-adjusted performance by excess return (over the risk-free rate) per unit of
deviation.

26It is well known that SR is subject to the assumption that portfolio returns are normally distributed, thus, relies
on symmetric distributions to provide reliable assessments. However, in case that portfolio returns exhibit excess
skewness, SR could result in misleading evaluations if one fails to take into account such asymmetries. Lien (2002)
demonstrates that UP could provide opposite but more plausible rankings among alternative investment strategies
than SR when the returns exhibit positive skewness, but also the same rankings as SR when the returns are distributed
normally. Therefore, we consider DOWN and UP as superior portfolio performance measures than SR.

27CEQ has been widely adopted to assess portfolio performance in the asset allocation literature. See, for instance,
Kandel and Stambaugh (1996), Campbell and Viceira (1999), Ang and Bekaert (2002), Campbell and Thompson
(2008) and Rapach, Strauss, and Zhou (2010).
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where γ is the risk aversion coefficient, µ̄τ+1:T and σ̄2τ+1:T is sample mean and variance of realized

portfolio returns, respectively. It is worth noting that the difference of CEQ’s can be interpreted

as the Performance Fee28 (a.k.a. opportunity cost) that is adopted in a number of studies, e.g.

Fleming, Kirby, and Ostdiek (2001). Given the simple relationship between performance fee and

CEQ, we only consider CEQ in our studies.

Lastly, to measure the amount of trading required to implement the strategy, we follow DeMiguel,

Garlappi, and Uppal (2009) and compute the Portfolio Turnover, which can be interpreted as the

average percentage of wealth traded at each period, as:

TOτ+1:T =
1

T − τ

T−1∑
t=τ

K∑
j=1

(|ωj,t+1 − ωj,t+ |) (15)

where ωj,t+1 is the desired portfolio weight in asset j at time t+ 1; ωj,t+ is the portfolio weight in

asset j before rebalancing at time t+ 1.

Consistent with DeMiguel, Garlappi, and Uppal (2009), we incorporate a proportional trans-

action cost into all portfolio returns. When a portfolio of N assets is rebalanced at time t + 1,

the magnitude of trading asset j is |ωj,t+1 − ωj,t+|. Provided a proportional transaction cost c, the

trading cost of the entire portfolio is c ·
∑N

j=1 |ωj,t+1 − ωj,t+|. Therefore, we can write the portfolio

return net of transaction cost as

rnetp,t+1 = (1 + rp,t+1)(1− c ·
N∑
j=1

|ωj,t+1 − ωj,t+|)− 1 (16)

where rp,t+1 =
∑N

j=1 rj,t+1ωj,t is the portfolio return with zero transaction cost.

4.2 The Non-MV (4-Moment) Case

Departing from the classic Markowitz paradigm, we next investigate the impact of higher moments

of asset returns on optimal multi-asset strategies. To capture investors’ preferences for the first

28The difference of CEQ’s (i.e. Performance Fee) can be interpreted as the premium that needs to be added to the
benchmark portfolio return so that the investor becomes indifferent between the competing and benchmark portfolios.
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4 moments of portfolio returns, we consider a non-MV investor characterized by a power utility

function:29

U(Wt+1) =
W 1−γ
t+1

1− γ
(17)

where Wt+1 is the investor’s wealth at time t + 1 and γ (γ > 0 and γ 6= 0) measures her constant

relative risk aversion (CRRA). Hence, the investor’s portfolio optimization problem (described in

Eq.(1)) is given by:

max
{ωt}

Et[
W 1−γ
t+1

1− γ
] (18)

Following the literature [see, among others, Harvey and Siddique (2000), Dittmar (2002), and

Jondeau and Rockinger (2006, 2012)] we approximate the expected power utility function as a

fourth-order Taylor series expanded around Wt+1:

Et[
W 1−γ
t+1

1− γ
] ≈ φ0 + φ1m

(1)
p,t+1 + φ2m

(2)
p,t+1 + φ3m

(3)
p,t+1 + φ4m

(4)
p,t+1 (19)

where φ0 = 1
1−γ , φ1 = 1, φ2 = −γ

2 , φ3 = γ(γ+1)
6 , φ4 = −γ(γ+1)(γ+2)

24 , and m
(i)
p,t+1 is the ith-order

expected non-central moment of portfolio returns. Even though there is no widely accepted rule

for selecting the optimal order of truncation, this 4-Moment framework is economically appealing:

the investor favors expected return and positive skewness (φ1 & φ3 > 0) but dislikes variance and

kurtosis (φ2 & φ4 < 0)), in accordance with the economic theories suggested by Scott and Horvath

(1980) and Dittmar (2002).

Hence, the non-MV investor’s time-t optimal 4-Moment portfolio weights are defined as:

w∗t = arg max{φ0 + φ1m
(1)
p,t+1 + φ2m

(2)
p,t+1 + φ3m

(3)
p,t+1 + φ4m

(4)
p,t+1} (20)

29Campbell and Viceira (2003) point out that power utility implies that absolute risk aversion is declining in wealth,
while relative risk aversion is a constant (γ). As absolute risk aversion should decline, at the very least should not
increase, with wealth, this rules out the assumption of quadratic utility and favors power utility over exponential
utility.
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4.2.1 Implementing 4-Moment Strategies

To solve the 4-Moment portfolio optimization problem, we need to estimate the first four non-

central moments of portfolio returns (i.e. {m(i)
p,t+1}i=1,··· ,4). Jondeau and Rockinger (2012) show

that these moments can be analytically expressed as functions of portfolio weights, expected returns,

covariance, co-skewness and co-kurtosis of asset returns.

Thus, to solve the 4-Moment optimal portfolio problem defined in Eq.(20), one needs one-

step-ahead forecasts for all those return moments. Notation wise, one needs to obtain estimators

for {µt+1, Σt+1, St+1, Kt+1}, where µt+1, Σt+1, St+1 and Kt+1 are expected returns, covariance,

co-skewness and co-kurtosis matrices, respectively.

Consistent with the implementation of MV strategies, we consider two types of estimators in

the 4-Moment case, namely the BWD set denoted by {µ̄t, Σ̄t, S̄t, K̄t} and the FWD set denoted by

{µ̂t+1|t, Σ̂t+1|t, Ŝt+1|t, K̂t+1|t}. The BWD estimators can be easily computed from sample returns

using information available upto time t. We have already introduced estimating µ̂t+1|t in Section 4.1.

In estimating {Σ̂t+1|t, Ŝt+1|t, K̂t+1|t} we follow the procedure proposed by Jondeau and Rockinger

(2012). We outline the entire procedure in Appendix B.

With the moment estimators, either {µ̄t, Σ̄t, S̄t, K̄t} or {µ̂t+1|t, Σ̂t+1|t, Ŝt+1|t, K̂t+1|t}, we can

numerically solve the non-MV investor’s optimization problem for the optimal portfolio weights ω∗t

in Eq.(20). By repeating this optimizing procedure at each time t = τ, · · · , T − 1, we can obtain

the optimal portfolio weights {ω∗t }t=τ,··· ,T−1.

4.2.2 Evaluating Non-MV Allocation Strategies

As SR might not be a reliable measure for investors with higher moment preferences, we drop the

SR and consider the following measures assessing the performance of 4-Moment portfolio strategies:

the UP defined as Eq.(13) in section 4.1.4, the power utility-based (CEQ) adopted by Cenesizoglu

and Timmermann (2012), and two additional risk-only measures, the 1% Value-at-Risk (1%VaR)

and the 1% Expected Shortfall (1%ES).
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Specifically, the CEQ based on power utility is computed as:

CEQτ+1:T = [(1− γ)Ūτ+1:T (Wt)]
1

1−γ − 1 (21)

where Ūτ+1:T (Wt) is mean realized power utility. Similar to the CEQ in the MV case, the difference

of power utility-based CEQ’s can also be interpreted as the performance fee an investor is willing

to pay to switch from a benchmark strategy to the competing strategy.

Following Patton (2004) and Jondeau and Rockinger (2012), we consider two additional tail risk

measures, namely the 1% Value-at-Risk (1%VaR) and 1% Expected Shortfall (1%ES). In particular,

1%VaR, defined as the first empirical percentile of the realized returns, is calculated as:

1%V aR = F̂−1n (0.01) (22)

where F̂n is the empirical distribution of portfolio returns using the n OOS observations. The 1%ES

is computed as the average return on a portfolio given that the return has exceeded its 1% VaR:

1%ES = −En[rp,t|rp,t ≤ 1%V aR] (23)

where En is the sample average.

5 Data and Descriptive Statistics

5.1 Data

Our data are compiled from various standard sources, including Datastream, CRSP, Federal Reserve

Economic Database and the data libraries on Amit Goyal’s and Ken French’s websites.

We use both daily and monthly major return indexes measuring the three asset classes: U.S.

Equity, U.S. Bond and Commodity. Specifically, the equity class is proxied by the S&P500 Total

Return Index (SP500). The monthly data from CRSP go back to 1946:01 and the daily data

23



from Datastream start from 07/03/1962. The bond class is measured by the Barclays Capital U.S.

Aggregate Bond Index (Bond). The monthly and daily index data downloaded from Datastream

start from 1976:01 and 01/01/1989, respectively. The commodity class is represented using the

world-production weighted S&P Goldman Sachs Commodity Index (GSCI Total Return) 30. The

monthly and daily index data are obtained from Datastream, and respectively start from 1970:01

and 03/31/1970. We use the 30-day U.S. Treasury Bill as cash and the data are from Ken French’s

data library. All data series end on 12/31/2012. The reason we consider the GSCI instead of

alternative commodities indexes or individual futures is two-folds: 1. GSCI is one of the leading

investable commercial commodity indexes followed by a number of exchange-traded products and

also has the longest data history; 2. a majority of professional asset managers choose to gain their

exposure in commodity asset class through investment vehicles such as ETFs, ETNs and mutual

funds, which are index-based passive investment strategies.31

The predictive variables used in this study for forecasting monthly asset returns are mostly

macro economic variables and have been extensively studied in the literature.32 Specifically, a

majority of the predictors are available for download at Amit Goyal’s website. In addition, we

download the Baltic Dry Index data from Datastream, and obtain 1- to 30-year U.S. Treasury

Bond price data from the Fama-Bliss bond dataset on CRSP.

5.2 Descriptive Statistics

Panel A of Table 1 reports the summary statistics of asset annualized excess returns during the

full sample periods. We can see that Equity has the highest mean excess return (4.56%) and a

standard deviation of 14.9% and exhibits most extreme negative skewness (-0.56) and relatively

30The total return index measures the returns accrued from investing in fully-collateralized nearby commodity
futures, and the spot index measures the level of nearby commodity prices. Thus, the excess return and total return
indices provide useful representations of returns available to investors from investing in the S&P GSCI.

31According to Morningstar & Barron’s Alternative Investment Survey 2011, over 60% of institutional investors
choose commodity ETFs, ETNs and mutual funds as their primary vehicles to access the commodity investment.

32For Equity, see, among others, Campbell and Thompson (2008), Welch and Goyal (2008), Rapach, Strauss,
and Zhou (2010), Henkel, Martin, and Nardari (2011). For Bond, Cochrane and Piazzesi (2005), Ilmanen (1995),
Ludvigson and Ng (2009). For Commodity, Bessembinder and Chan (1992), Bakshi, Panayotov, and Skoulakis (2011),
Gargano and Timmermann (2012), Hong and Yogo (2012).
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high excess kurtosis (1.08). Commodity has a mean excess return of 4.06%, the highest standard

deviation (21.19%) and distributes with negative skewness (-0.17) and the most extreme excess

kurtosis (2.0). Bond has the lowest mean (3.62%), the lowest standard deviation (3.73%), a modest

negative skewness (-0.28) and the lowest excess kurtosis (0.57).

Panel B of Table 1 reports the unconditional correlation matrix of the three monthly excess

return series. We find that Commodity is positively correlated with Equity (0.17), but uncorrelated

with Bond (-0.03).

[Table 1 goes here...]

6 Empirical Results

6.1 Results for MV Case

In this section, we report the empirical results of the MV case. We first present the statistical

evaluation on forecastability of excess returns, volatility and correlations for each asset class. Next,

we discuss the economic assessment on the competing multi-asset investment strategies specified in

Section 4.

6.1.1 Statistical Evaluation of Forecastability

Table 2 reports the statistical results of evaluating the FWD estimators relative to various BWD

benchmarks during the 1995:01 - 2012:12 OOS period. Panel A shows the OOS R2 statistics of

predicting excess returns, and Panel B presents the results of M-Z regressions for volatility and

correlations defined in Eq.(10) and Eq.(11), respectively. For excess returns, a positive OOS R2
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indicates that the FWD estimator is superior to its corresponding BWD peer, evaluating based on

the ex post realized excess returns. For volatility and correlations, the benchmark, i.e. the left-hand

side variable in E-Z regressions, is the ex post realized volatility and correlations computed from

daily returns.33

In Panel A of Table 2, we compare the FWD forecasts of excess returns from an expanding

window estimation with three BWD ones, namely 5- and 10-year rolling mean and full-sample

historical mean. Consistent with Welch and Goyal (2008), we find that the FWD estimator yields

the lowest R2 relative to the historical mean, but it does generate more accurate forecasts than

all BWD estimates except the historical mean of SP500. Turning to the results of volatility and

correlations shown in Panel B of Table 2, the main finding is that almost all FWD estimators, in

comparison with their BWD peers, generate closer-to-zero β0’s, closer-to-one β1’s and much higher

R2’s. In summary, FWD estimators tend to statistically outperform BWD peers by meaningful

margins, especially for volatilities and correlations.

[Table 2 goes here...]

6.1.2 Economic Evaluation of Strategy Performance

In this section, we evaluate the MV investor’s multi-asset investment strategies from Section 4.1.

We first compare the BWD S-B strategy with the BWD S-B-C strategy, neither of which take

into account the time-varying properties of asset return moments. Then, we report the compar-

ison among strategies that exploit the predictability in asset returns, volatility and correlations.

Lastly, we source the economic gains by switching from BWD to FWD and identify the magnitude

33Even though volatility and correlations are latent and thus unobservable, Andersen and Bollerslev (1998) suggest
that realized volatility calculated from higher-frequency data is a reliable measure of ex-post volatility.
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associated with each dimension of predictability.

We report empirical results under three constraints on the weights of risky assets that have

been widely imposed in the asset allocation literature: 1. no short-selling (0 < w); 2. no short-

selling and limited leverage (0 < w < 1), 3. no-short selling and no-leverage (0 < w < 0.33) As

the empirical implementation requires a specification of the investor’s risk attitude, following the

extant literature, we consider alternative levels of relative risk aversion coefficient, γ = 3, 6, 10 that

respectively represent low, moderately and extremely risk averse investors.34 As the FWD strategies

generate higher portfolio turnover than the BWD ones, we include an estimate of transaction costs

for the alternative strategies. We set the proportional transaction cost equal to 50 bps for trading

all asset class indexes and report the net-transaction-cost results below.35 We also consider passive

strategies that rebalance the portfolio back to a predetermined fixed weight (e.g. 60% stock - 40%

bond or 60% stock - 30% bond - 10% commodity). Because these passive strategies yield significant

underperformance relative to the active strategies reported here, we do not include those results

but they are available upon request.

Panel A of Table 3 reports the performance measures for BWD S-B and BWD S-B-C strategies.

We will focus on the comparison of CEQ in the discussion for two reasons: 1. CEQ has explicit

economic meanings that help us interpret the results; 2. SR does not appropriately measure

the conditional performance of an active strategy, because the ex post (unconditional) standard

deviation is an inappropriate measure for the (conditional) risk the investor is facing at each point

in time.[See Marquering and Verbeek (2004)] Across both sets of portfolio constraints and all

levels of risk aversion, the S-B-C strategies consistently underperform the S-B ones. Meanwhile,

adding Commodity to S-B portfolios generates substantially higher turnovers and, hence, higher

transactions costs. In particular, a moderately risk-averse MV investor (γ = 6), in a world without

34Even though the literature has not yet agreed upon a commonly accepted estimate of the coefficient of relative
risk aversion, many studies suggest a plausible value could be ranging from as low as 0.1 to 10. See, among others,
Mankiw (1985), Friend and Blume (1975) and Gordon and St-Amour (2004).

35DeMiguel, Garlappi, and Uppal (2009) assume 50 bps per transaction based on the studies for individual stocks
on the NYSE by Stoll and Whaley (1983), Bhardwaj and Brooks (1992) and Lesmond, Ogden, and Trzcinka (1999).
Daskalaki and Skiadopoulos (2011) assume 50 bps transaction cost for stock and bond indexes and 35 bps for
commodity index based on their discussion with practitioners in the commodity markets.
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predictability of asset return moments, would pay upto 30 bps per year to drop commodities

from her traditional asset portfolio. This result is consistent with the findings in Daskalaki and

Skiadopoulos (2011) who also employ the BWD estimators for their analysis.

Turning to Panel B of Table 3, we can see that almost all measures increase dramatically.

This indicates that switching from BWD to FWD strategies adds sizable value to both S-B and

S-B-C investors. Zooming into the comparisons between S-B and S-B-C, we can see that the

commodity-augmented strategies dominate the traditional asset ones across both weight constraints

and all levels of risk aversion. For instance, a moderately risk-averse investor facing a short-selling

constraint would pay 101 bps annually in order to incorporate commodity into her traditional S-B

portfolio. In other words, these results indicate that investors not only benefit from employing

FWD investment strategies, but also gain extra value by including Commodity in their S-B-C

portfolios. As we mentioned earlier, implementing FWD strategies does come with cost - high

portfolio turnover. On average, FWD strategies need to rebalance 8-20% of wealth each month,

approximately 5-8 times as much as the BWD ones do. However, all FWD strategies survive a

transaction cost of 50 bps. The comparisons of the Upside Potential Ratio (UP) broadly confirms

the conclusions from the analysis of CEQ.

[Table 3 goes here...]

Given the important differences that arise from comparing S-B and S-B-C under the BWD

and FWD scenarios, we next investigate the sources of such difference. To do so, we use the

BWD strategies as benchmark and add one FWD moment at one time to explore the changes in

comparisons. Table 4 reports the results that compare BWD and FWD on each dimension. Due

to space limitation, we only present the γ = 6 case, but the results are qualitatively the same
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with other risk aversion coefficients. We first compare the first rows (BWD & BWD) in the S-

B and S-B-C panels, the benchmark case. We can see that the commodity-augmented strategy

underperforms the traditional asset strategy across all metrics. Adding the FWD expected returns

only (FWD & BWD), the performance of both strategies increases relative to their benchmarks,

but the S-B-C still underperform the S-B. However, replacing the BWD covariance matrix with

the FWD one (BWD & FWD), the S-B-C portfolio outperforms the S-B by 128 bps in CEQ.

Combining FWD expected returns and FWD covariance matrix (FWD & FWD), both S-B and

S-B-C yield the highest value and S-B-C dominates S-B by a margin of 101 bps in CEQ. The results

are slightly different in the case of no short-selling and limit leverage constraints (0 < w < 1) that,

in both S-B and S-B-C panels, the best performance comes out at BWD & FWD instead of FWD

& FWD. However, it is still the case that the S-B-C strategy dominates the S-B portfolio: after

accounting for transactions costs, our estimate indicate that an investor would pay up to 71 basis

points in order to augment his S-B portfolio with a dynamic exposure to commodities. In summary,

the results indicate that, to an investor facing no short-selling constraint, forecasting asset returns

and covariance matrix individually could add significant economic value of her portfolio, and her

portfolio value is maximized by forecasting both. On the other hand, to an investor facing both no

short-selling and limited leverage constraints, her portfolio value is maximized by employing FWD

covariance only. Furthermore, the majority of added value by going from BWD to FWD strategies

comes from covariance forecasting.

[Table 4 goes here...]

We can see from Table 3 that, as investors’ risk aversion (Gamma) increases, portfolio perfor-

mance tends to decrease. This, as shown in Eq.(3), is because more risk averse investors tend to
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hold less risky assets and more cash. However, we also observe that the outperformance margins

of S-B-C relative to S-B has also decreased as risk aversion increases. To investigate this issue,

we show the average weights and weight changes of S-B-C strategies for different risk aversion

levels in Table 5. We can see that, by increasing Gamma from 3 to 10, the weights in stocks,

bonds and commodities across all strategies drop by 31%, 3% and 38% on average, respectively.

In contrast, the weight in cash increases by 72%. Furthermore, the magnitudes of reduction are

positively associated with the risk levels of asset classes. Specifically, the average weight reduction

in commodities is 7% more than that in stocks each month. In other words, as an investor becomes

more risk averse, she tends to scale down her position in commodities more than that in other risky

assets, which, in turn, makes her S-B-C portfolio closer to the S-B portfolio. Such disproportionate

reductions in the allocation to commodities could potentially explain the shrinking outperformance

margins of S-B-C versus S-B strategies as an investor’s risk aversion increases.

[Table 5 goes here...]

6.1.3 Robustness of Results

To assess the robustness of the results presented in the previous section, we perform several addi-

tional tests.

First, we employ different estimation window sizes for all BWD and FWD moment estimators,

namely 5yr-, 10yr-rolling and full sample expanding windows. We find that our conclusions remain

valid across all window sizes.

Second, we use alternative forecasting methods for volatility and correlations. Specifically,

instead of the GARCH-type volatility model, we employ autoregressive specifications to forecast
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monthly realized volatility computed from daily returns. We also consider the asymmetric DCC

framework proposed by Engle and Colacito (2006) to forecast conditional correlation matrices. We

find that these sophisticated models do fit data better in-sample. However, they tend to slightly

underperform their simpler versions in the out-of-sample context.

Third, as an alternative to the GSCI index, we repeat the analysis using the UBS-Dow Jones

Commodity index. Fourth, instead of using the broad-based commodity index (GSCI), we repeat

our analyses with sub-sector commodity indexes, including agriculture, energy, industrial metals

and precious metals.

6.2 Results for Non-MV Case

In this section, we evaluate the MV investor’s multi-asset investment strategies from Section 4.2.

6.2.1 Statistical Evaluation of Predictability

TO BE ADDED

6.2.2 Economic Evaluation of Portfolio Performance

TO BE ADDED

7 Concluding Remarks

In this paper, we examine the economic value of adding commodities into a traditional (stock-

bond-cash) portfolio in an out-of-sample context. In contrast to existing literature, which conducts

the analysis using backward looking estimators for asset returns moments when forming optimal

portfolios, we model and forecast the dynamics of return moments in a forward looking framework.

This allows us to exploit the predictability of mean, volatility, correlations, skewness and kurtosis
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of returns that previous studies did not account for when assessing the role of commodities in

multi-asset portfolios. We perform the analysis for both MV and non-MV investors.

For the MV case, we find that, by exploiting the predictability of asset return moments, the

addition of commodities to a traditional asset portfolio generates significant out-of-sample economic

value. We next examine the sources of the economic gains, and find that predicting excess returns

and covariance matrix separately adds significant value to MV investors, but most of the added

value comes from predicting the covariance matrix.
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Appendices

A Covariance Matrix Forecasting

We follow the two-stage DCC model proposed by Engle (2002) and the multi-period ahead fore-

casting method introduced in Engle and Sheppard (2001) to estimate and forecast the conditional

covariance matrix over the multi-period [t+ 1 : t+ n]:

Σ̂t+1:t+n|t = D̂t+1:t+n|tP̂t+1:t+n|tD̂t+1:t+n|t (A.1)

where Σ̂t+1:t+n|t is the covariance matrix forecasts, D̂t+1:t+n|t is a diagonal matrix with the volatil-

ity forecasts, and P̂t+1:t+n|t is the correlation forecasts.

Step 1 : Forecast the conditional volatility diagonal matrix D̂t+1:t+n|t.

Estimate the IS GARCH(1,1) model using data upto time t:

rt = ut + εt (A.2)

σ2t = ω + αε2t−1 + βσ2t−1 (A.3)

where rt is asset return at time t, ut is the mean of return upto time t, and εt is the residuals from

the mean equation (A.2).

Produce the one-period ahead variance forecasts σ̂2t+1|t:

σ̂2t+1|t = ω̂t + α̂tε
2
t + β̂tσ̂

2
t (A.4)

where ωt, αt and βt are coefficients estimated using data upto time t from the model specified in

Eq.(A.2-A.3).
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Aggregate one-period ahead forecasts into multi-period forecasts:

σ̂2t+1:t+n|t = n ∗ σ̂2t+1|t (A.5)

where n is the number of trading days during the period [t+ 1 : t+ n].

The OOS diagonal volatility matrix forecast D̂t+1:t+n|t is given by:

D̂t+1:t+n|t =



σ̂1,t+1:t+n|t 0 · · · 0

0 σ̂2,t+1:t+n|t · · · 0

...
...

. . .
...

0 0 · · · σ̂K,t+1:t+n|t


; 1 · · ·K assets

Step 2 : Forecast the conditional correlation matrix Pt+1:t+n|t.

Remove the conditional mean from the K asset return series rt and obtain their residuals εt =

[ε1,t, ε2,t, · · · , εK,t]′ and standardize the residuals using the conditional standard deviation Dt:

st = D
− 1

2
t εt (A.6)

Fit st into the following multivariate model:

Qt = (1− α− β)Ω + αst−1s
′
t−1 + βQt−1 (A.7)

where Ω is the unconditional covariance matrix of st and Qt is the conditional covariance matrix.

Produce the one-period-ahead forecasts:

Q̂t+1|t = Ω̂t + α̂tsts
′
t + β̂tQ̂t (A.8)
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where Ω̂t, α̂t and β̂t are estimates from Eq.(A.7).

By making the approximation that Et[st+1s
′
t+1] ≈ Qt+1, the n-period ahead forecasts of Q can be

generated:

Q̂t+n|t =
n−2∑
i=0

(1− α− β)Ω(α+ β)i + (α+ β)n−1Q̂t+1|t (A.9)

Aggregate single-period forecasts into multi-period forecasts:

Q̂t+1:t+n|t =

n∑
i=1

Q̂t+i|t (A.10)

Obtain the multi-period correlation matrix forecasts:

P̂t+1:t+n|t = Q̂
∗− 1

2

t+1:t+n|tQ̂t+1:t+n|tQ̂
∗− 1

2

t+1:t+n|t (A.11)

where Q̂∗t+1:t+n|t denotes the n×n diagonal matrix composed of the diagonal elements of Q̂t+1:t+n|t.

Plugging D̂t+1:t+n|t and P̂t+1:t+n|t into Eq.(A.1), we can obtain the conditional covariance matrix

forecast Σ̂t+1:t+n|t.
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B Forecasting higher moments

In what follows we report the details of the procedure proposed by Jondeau and Rockinger (2012) in

order to forecast the first four moments of individual asset and portfolio returns that are necessary

to solve the portfolio optimization problem for a non-MV investor.

A portfolio’s first four non-central moments in Eq.(20) can be written as:

m
(1)
p,t+1 = µp,t+1

m
(2)
p,t+1 = σ2p,t+1 + µ2p,t+1

m
(3)
p,t+1 = u

(3)
p,t+1 + 3µp,t+1σ

2
p,t+1 + µ3p,t+1

m
(4)
p,t+1 = u

(4)
p,t+1 + 4u

(3)
p,t+1µp,t+1 + 6σ2p,t+1µ

2
p,t+1 + µ4p,t+1

(B.1)

where µp,t+1, σ
2
p,t+1, u

(3)
p,t+1 and u

(4)
p,t+1 are the portfolio’s expected return, variance, third and fourth

central moments, respectively. For a given portfolio weights ωt, the expected portfolio return,

variance, third and fourth central moments are expressed as:

µp,t+1 = ω′tµt+1

σ2p,t+1 = ω′tΣt+1ωt

u
(3)
p,t+1 = ω′tSt+1(ωt ⊗ ωt)

u
(4)
p,t+1 = ω′tKt+1(ωt ⊗ ωt ⊗ ωt)

(B.2)

where µt+1, Σt+1, St+1 and Kt+1 are expected asset returns, covariance, co-skewness and co-kurtosis

matrices, respectively.

Provided the expected third and fourth central moments (i.e. u
(3)
i,t+1 and u

(4)
i,t+1) exist for each

asset return series ri,t, we can obtain the n× n2 conditional co-skewness matrix:

St+1 = Et[(rt+1 − µt+1)(rt+1 − µt+1)
′ ⊗ (rt+1 − µt+1)

′] = {sijk,t+1} (B.3)

with component (i, j, k) : sijk,t+1 =
N∑
r=1

σir,t+1σjr,t+1σkr,t+1u
(3)
r,t+1

where σij,t+1 is the element of the “square root” of the covariance matrix, Σ
1
2
t+1, which can be
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obtained using Eigen decomposition. The conditional co-kurtosis matrix:

Kt+1 = Et[(rt+1 − µt+1)(rt+1 − µt+1)
′ ⊗ (rt+1 − µt+1)

′ ⊗ (rt+1 − µt+1)
′] = {kijkl,t+1} (B.4)

with component (i, j, k, l) : kijkl,t+1 =
∑N

r=1 σir,t+1σjr,t+1σkr,t+1σlr,t+1u
(4)
r,t+1 +

∑N
r=1

∑
s 6=r ψrs,t+1

where ψrs,t+1 = σir,t+1σjr,t+1σks,t+1σls,t+1 +σir,t+1σjs,t+1σkr,t+1σls,t+1 +σis,t+1σjr,t+1σkr,t+1σls,t+1.

Therefore, to derive the first four moments of the 4-Moment FWD strategy described Eq.(B.1) -

Eq.(B.4), the first step is to obtain the FWD estimates for ski,t+1 and kui,t+1, namely the third and

fourth central moments for each asset return. The following steps detail the estimation procedure

for u
(3)
i,t+1 and u

(4)
i,t+1:

Step 1 : Estimate the following model using information available upto time t and obtain the IS

parameter estimates.

The n asset excess returns, rt = [r1,t, · · · , rn,t]:

rt = µt + εt (B.5)

εt = Σ
1
2
t zt (B.6)

zt ∼ g(zt|λt, ηt) (B.7)

Eq.(B.5) decomposes the excess return vector, rt, into two parts: the expected excess returns, µt,

and the unexpected excess returns, εt. Eq.(B.6) describes the unexpected returns εt, where zt

denotes the independent innovation vector with zero mean and unit variance, and Σt = DtPtD
′
t

denotes the conditional covariance matrix, where Dt is a diagonal matrix with standard deviations

on the diagonal and Pt is the symmetric conditional correlation matrix. Eq.(B.7) specifies that the

marginal distribution of innovations zt follows Hansen’s generalized Skew-t distribution g(zt|λt, ηt),

where λt and ηt respectively capture the time-varying asymmetries and fat-tailedness.

Furthermore, we follow Jondeau and Rockinger (2012) and adopt the GJR-GARCH specification

to model conditional variance for each asset returns, σ2i,t:

σ2i,t = ωi,t + αiε
2
i,t−1 + βiσ

2
i,t−1 + ψiε

2
i,t−1 · 1(εi,t−1<0) (B.8)
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Moreover, we employ the DCC specification of Engle(2002) to model the timing varying correlation

matrix, Pt:

Pt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2 (B.9)

Qt = (1− a− b)Q̄+ a(st−1s
′
t−1) + bQt−1 (B.10)

where a and b are scalars, and st = D−1t εt is standardized residuals.

The dynamics of conditional variance and correlations are driven by the innovation vector, zt,

which is drawn from the multivariate Skew-t distribution with time-varying individual asymmetry

parameter and the degree of freedom, λi,t and ηi,t respectively. The dynamic process of the two

shape parameters are modeled as:

λi,t = −1 +
2

1 + e−λ̃i,t
(B.11)

λ̃i,t = d0 + d−1 zi,t−1 · 1(zi,t−1≤0) + d+1 zi,t−1 · 1(zi,t−1>0) + d2λ̃i,t−1 (B.12)

ηi,t = −4 +
26

1 + e−η̃i,t
(B.13)

η̃i,t = c0 + c−1 |zi,t−1| · 1(zi,t−1≤0) + c+1 |zi,t−1| · 1(zi,t−1>0) + c2η̃i,t−1 (B.14)

Eq.(B.12) and Eq.(B.14) respectively specify the temporal dynamic process of the asymmetry

parameter λi,t and the degree of freedom ηi,t. Eq.(B.11) and Eq.(B.13) respectively denote the

logistic mappings from estimated parameters to true Skew-t shape parameters that satisfy the

theoretical restrictions pointed out by Hansen (1994).36 The model Eq.(B.5) - Eq.(B.14) can be

estimated using the Maximum Likelihood method. The parameter estimates obtained from the

estimation based on asset return data available upto time t are:

{ω̂i,t, α̂i,t, β̂i,t, ât, b̂t, ĉ0,t, ĉ−1,t, ĉ
+
1,t, ĉ2,t; d̂0,t, d̂

−
1,t, d̂

+
1,t, d̂2,t} (B.15)

Step 2 : Obtain one-period ahead OOS parameter forecasts using the estimates in Eq.(B.15).

ˆ̃
λt+1|t = d̂0,t + d̂−1,tzt · 1(zt≤0) + d̂+1,tzt · 1(zt>0) + d̂2,tλ̂t (B.16)

36To ensure the first four moments exist, the two restrictions need to be maintained: −1 < λi,t < 1 and ηi,t > 4.
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λ̂t+1|t = −1 +
2

1 + e−
ˆ̃
λt+1|t

(B.17)

ˆ̃ηt+1|t = ĉ0,t + ĉ−1,t|zt| · 1(zt≤0) + ĉ+1 |zt| · 1(zt>0) + ĉ2,tη̂t (B.18)

η̂t+1|t = −4 +
26

1 + e−
ˆ̃ηt+1|t

(B.19)

where 1(zt≤0) is an indicator function, and η̂t+1|t and λ̂t+1|t are the next period shape parameter

OOS forecasts.

Step 3 : Forecast one period ahead central moments for each asset:

µ̂
(3)
t+1|t = M̂3,i,t+1|t − 3M̂1,t+1|tM̂2,t + 2M̂3

1,t+1|t (B.20)

µ̂
(4)
t+1|t = M̂3,t+1|t − 4M̂1,t+1|tM̂2,t+1|t + 6M̂2

1,t+1|tM2,t+1|t − 3M̂4
1,t+1|t (B.21)

where

M̂r,t+1|t =
Γ(

η̂t+1|t−r
2 )Γ( r+1

2 )(η̂t+1|t − 2)
r+1
2√

π(η̂t+1|t − 2)Γ(
η̂t+1|t

2 )
·
λ̂r+1
t+1|t + (−1)r

λ̂r+1
t+1|t

λ̂t+1|t + 1
η̂t+1|t

is the rth raw moment of zt. Clearly, the third and fourth central moments of zt are non-linear

functions of the shape parameter estimates η̂i,t+1|t and λ̂i,t+1|t.
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N Mean Stdev Median Min Max Skew X‐Kurt

SP500 288 .0456 .1490 .1004 ‐.89 2.42 ‐.56 1.08

Bond 288 .0362 .0373 .0434 ‐.34 .54 ‐.28 .57

GSCI 288 .0406 .2119 .0523 ‐.98 10.12 ‐.17 2.00

Panel B: Unconditional correlation matrix

SP500 1

Bond 0.13 1

GSCI 0.17 ‐0.03 1

Table 1

Descriptive Statistics

    Panel A presents the summary statistics of monthly excess returns of three major asset class 

indexes: S&P500, Barclays Aggregate Bond Index and S&P GSCI. Panel B reports the 

unconditional correlation matrix. The datasets span the period 01/1989 ‐ 12/2012.

Panel A: Summary Statistics



Panel A: OOS R2 for Excess Return Forecasting 

Bwd window 5Yr 10Yr HM

SP500 3.0 0.8 ‐0.2

Bond 6.7 4.1 5.1

GSCI 2.9 2.4 1.2

Panel B: Mincer‐Zarnowitz Regression Evaluation for Volatility and Correlation Forecasting

Volatility Correlation

Estimator β0 β1 R2(%) Estimator β0 β1 R2(%)

BWD‐5Yr 0.05 ‐0.02 0.01 BWD‐5Yr ‐0.15 0.54 13.88

[5.59] [‐0.11] [‐5.06] [5.87]

BWD‐10Yr 0.12 ‐1.62 3.01 BWD‐10Yr ‐0.19 0.89 20.68

[4.43] [‐2.58] [‐6.52] [7.47]

FWD 0.00 0.89 59.58 FWD ‐0.05 1.00 54.65

[1.67] [17.76] [‐2.62] [16.06]

BWD‐5Yr 0.02 ‐0.54 1.68 BWD‐5Yr 0.04 0.76 30.09

[5.47] [‐1.91] [1.71] [9.6]

BWD‐10Yr 0.01 0.28 0.65 BWD‐10Yr 0.09 1.19 31.63

[2.91] [1.18] [4.88] [9.95]

FWD 0.00 0.97 37.91 FWD 0.05 0.99 41.92

[‐0.09] [11.43] [2.62] [12.43]

BWD‐5Yr 0.02 0.61 14.24 BWD‐5Yr ‐0.11 0.50 1.52

[3.83] [5.96] [‐5.19] [1.82]

BWD‐10Yr 0.01 0.86 14.12 BWD‐10Yr ‐0.09 ‐0.08 0.06

[1.42] [5.93] [‐4.9] [‐0.36]

FWD 0.01 0.92 49.06 FWD ‐0.03 0.70 11.83

[1.33] [14.35] [‐1.41] [5.36]

GSCI

SP500

&

Bond

SP500

&

GSCI

Bond

&

GSCI

Table 2

Statistical Evaluation of Predictability 

     The table reports the forecasting performance of monthly excess returns, volatility and correlation. Panel A 

represents the out‐of‐sample R2 statistics (in percentage), and the columns represent the sample window sizes 

of benchmark backward‐looking estimators. Panel B shows the results from running Mincer‐Zarnowitz 

regressions. The sample period spans 01/1995 ‐ 12/2012.

SP500

Bond



Constraint:
Metrics: SR UP CEQ TO(%) SR UP CEQ TO(%) SR UP CEQ TO(%)

Gamma = 3
S‐B .97 4.45 .1411 1 .39 2.53 .0220 3 .09 2.43 .0029 4
S‐B‐C .92 4.82 .1384 2 .36 3.44 .0204 4 .01 2.57 ‐.0017 4
Gamma = 6
S‐B .92 4.46 .0653 1 .66 2.78 .0261 2 .14 2.56 .0047 3
S‐B‐C .87 4.43 .0623 2 .53 2.85 .0236 3 .05 2.56 .0011 4
Gamma = 10
S‐B .90 3.79 .0378 1 .82 3.95 .0259 2 .22 2.53 .0075 2
S‐B‐C .84 3.76 .0355 2 .70 3.62 .0239 2 .13 2.52 .0059 3

Gamma = 3
S‐B 1.48 6.94 .3155 8 .44 3.90 .0287 15 .21 3.38 .0080 10
S‐B‐C 1.52 9.82 .3616 16 .50 4.60 .0414 17 .31 4.03 .0224 14
Gamma = 6
S‐B 1.33 5.79 .1346 8 .65 3.90 .0291 14 .22 3.51 .0077 11
S‐B‐C 1.33 7.78 .1447 16 .66 4.74 .0362 16 .29 4.17 .0188 17
Gamma = 10
S‐B 1.26 5.12 .0742 8 .84 4.56 .0277 11 .27 3.61 .0084 13
S‐B‐C 1.24 6.62 .0760 16 .81 5.08 .0318 13 .26 3.95 .0138 20

Panel B: FWD

Table 3

Measures of Strategy Performance: Stock‐Bond vs. Stock‐Bond‐Commodity

    The table reports the strategy performance for the Stock‐Bond (S‐B) versus Stock‐Bond‐Commodity (S‐B‐C) and 

Backward‐ versus Forward‐looking estimators. The reported metrics include: the annualized Sharpe ratio (SR), the 

annualized Sortino's UP ratio (UP), the annualized Certainty Equivalent Return (CEQ) and the Turnover (TO). The 

results for various levels of risk aversions, portfolio contraints and sub‐periods are also reported. Full period: 

01/1995 ‐ 12/2012. Transaction cost: 50bps.

0 < w 0 < w < 1 0 < w < 0.333

Panel A: BWD



Constraint:

Metrics: SR UP CEQ TO SR UP CEQ TO SR UP CEQ TO

Bwd & Bwd .92 4.46 .0653 1 .66 2.78 .0261 2 .14 2.56 .0047 3

Fwd & Bwd .96 4.96 .0751 9 .53 2.48 .0205 11 .19 3.04 .0037 13

Bwd & Fwd 1.12 5.71 .0950 6 .65 3.60 .0241 14 .22 3.48 .0050 12

Fwd & Fwd 1.33 5.79 .1346 8 .55 3.90 .0291 15 .22 3.51 .0077 11

Bwd & Bwd .87 4.43 .0623 2 .53 2.85 .0236 3 .05 2.56 .0011 4

Fwd & Bwd .94 4.94 .0690 16 .44 2.46 .0146 16 .28 3.79 .0071 17

Bwd & Fwd 1.16 7.26 .1078 9 .66 4.07 .0294 16 .30 3.59 .0085 14

Fwd & Fwd 1.33 7.78 .1447 16 .60 4.74 .0362 20 .29 4.17 .0188 17

S‐B‐C

Table 4

Measures of Strategy Performance: BWD vs. FWD

    The table reports the strategy performance for the Stock‐Bond (S‐B) versus Stock‐Bond‐Commodity (S‐B‐C) and 

Backward‐ versus Forward‐looking estimators. The reported metrics include: the annualized Sharpe ratio (SR), the 

annualized Sortino's UP ratio (UP), the annualized Certainty Equivalent Return (CEQ) and the Turnover (TO). The 

results for various levels of risk aversions, portfolio contraints and sub‐periods are also reported. Full period: 

01/1995 ‐ 12/2012. Transaction cost: 50bps. Risk aversion coefficient: 6.

S‐B

0 < w 0 < w < 1 0 < w < 0.333



Strategy Stock(%) Bond(%) Commodity(%) Cash(%)

Bwd & Bwd 43 100 55 ‐98

Fwd & Bwd 40 98 56 ‐94

Bwd & Fwd 56 100 61 ‐117

Fwd & Fwd 54 99 63 ‐116

Bwd & Bwd 13 100 18 ‐30

Fwd & Bwd 12 92 19 ‐24

Bwd & Fwd 21 99 21 ‐42

Fwd & Fwd 22 95 24 ‐40

Bwd & Bwd ‐30 0 ‐37 67

Fwd & Bwd ‐28 ‐7 ‐36 70

Bwd & Fwd ‐35 ‐1 ‐40 75

Fwd & Fwd ‐32 ‐5 ‐39 76

Avg. Changes ‐31 ‐3 ‐38 72

Table 5

Relative Risk Aversions and Average Weights of S‐B‐C Strategic Portfolios

    This table shows the average weights of asset classes in each strategic S‐B‐C portfolio and 

the reductions in weights from increasing risk aversion. Specifically, the first panel reports the 

average weights for the investors with relatively low risk aversion (Gamma = 3); the second 

panel reports the average weights for the investors with relatively high risk aversion (Gamma 

= 10); the third panel reports the average weight changes in Gamma. The negative values 

mean weight reduction and the positive values mean weight increases. Constraints for 

weights: 0 < w < 1.

GAMMA=3

GAMMA=10

Changes in weights



 

 

Figure 1: Dynamic Correlations between S&P500, Bond and GSCI indexes. Sample period: 1993:01 – 

2012:12. 
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